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1. INTRODUCTION.
1.1. A “gauge-theory” for microswimming.

About 2.5×102 years ago d’Alembert and Lagrange considered mechan-
ical problems with linear constraints in generalized velocities. Lagrange-
d’Alembert’s principle states that constraint reaction forces produce no
work. The generic case of nonintegrable constraints is called “nonholo-
nomic mechanics”.

On the other hand, if a variational principle (subject to the constraints)
is used, one gets “vakonomic mechanics”, in the nice terminology (varia-
tional axiomatic) coined Arnold’s school [1]. Hertz [17] already knew that,
although using the same ingredients, the two mathematical theories, non-
holonomic and vakonomic, are quite different: in nonholonomic mechanics,
trajectories follow the straightest paths satisfying the constraints, whereas
in vakonomic mechanics they follow the shortest paths. But unless the
constraints are holonomic, straightest are not the same as shortest paths!

In Mechanical Engineering most applications are of nonholonomic (that
means, of Lagrange-d’Alembert) type; in contradistinction, most applica-
tions in Control Engineering require vakonomic mechanics. Although one
would think that the former is the oldest, actually it is rather the opposite.
Applications of vakonomic mechanics started about 4.0× 109 years ago!

In fact, as outlined in the programme described in [20], optimal mi-
croswimming is a sub-riemannian geometry1. Flagellar locomotion was
left aside in the previous studies of our group [20, 21, 22, 23, 12, 13, 24],
and so will be the object of this paper.

The main object is a connection 1-form. The main point of this paper is
to show that the computation of the “Stokes connection” is feasible. For
simplicity, we will use the resistive theory for flagellary motion, [50]. The
geometric approach can be combined with more refined fluid mechanics,
but in practice the resistive-force approximation is adequate [9].

1.2. Historical remarks.
Following ideas presented by E. Purcell at the 1976 annual APS meeting

[39], Shapere and Wilczek proposed in 1989 a “gauge-theory” for swim-
ming at low Reynolds numbers [43, 44, 45]. Using analytical techniques for
Stokes flows they revisited ciliary locomotion of a spherical cell under the
“envelope” approximation [25, 3]. Building up along their lines, we pro-
posed a sub-riemannian geometry research programme for microswimming,
which we pursued in the above mentioned papers, and we considered more
general basic shapes.

1See [31] for background in Geometric Mechanics and [32] for Sub-riemannian Ge-
ometry. For a dictionary between optimal control, gauge theory and sub-riemmanian
geometry, see [33].
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Although a convenient geometric language did not exist in the early
50’s, the underlying structure was already clear to G.I. Taylor [48] and J.
Lighthill [25], the founding fathers of “mathematical biofluidynamics’. For
the period 1950-1975 we refer to the wonderful book [26] and the reviews
by Lighthill [27, 28]. Until the the mid 70’s the fluid mechanics community
produced a steady flow of publications on flagellated hydrodynamics; as a
sample of the literature see e.g., [4, 5, 6, 7, 8, 19, 18], and the proceedings of
the special year at Caltech in 1974 organized by Prof. T.Wu, C. Brennen,
and C. Brokaw [50]. Somehow the effort diminished later on; according to
Prof T.Wu (personnal communication), most questions posed at that time
by biologists were answered.

However, in the last ten years, new techniques in cell biology, specially
those related to optical tweezers, are producing exciting results and a new
agenda. For a glimpse of the recent literature, see [34, 49, 46, 47, 41, 42,
37, 10]. Certainly, these developments will stimulate a renewed surge of
interest in the mathematical study of cellular motion.

1.3. A earlier optimization attempt.
In the proceedings of the 1974 Caltech interdisciplinary year on “Swimming
and Flying in Nature”, [35], and in a subsequent paper published in the
Journal of Fluid Mechanics, [36], Pironneau and Katz posed the problem
of minimizing the power expenditure in flagellar locomotion as follows:

“Given that a (flagellated) organism swims from A to B in a given time, what
is the most economical way of doing so? Our notion of economy is thus a purely
hydrodynamical one, although our results are potentially useful in the study
of flagellar contraction mechanisms themselves” ... The methods of optimal
control theory are used in seeking those motions which propel an organism at
a prescribed speed while minimizing its instantaneous rate of hydrodynamical
working“ [35].

Hence they regarded the problem as

“an optimal control problem of a non-standard type, for which no general
theory has been developed ... the problem is non-standard in the sense of
optimal control theory in that the boundaries are not stationary [36]”.

Fâute de mieux, they decided to study a simplified problem:

“We shall therefore solve an alternative, though closely related problem in
which the instantaneous rate of working is minimized at each time“ [35].

We assert that any such instantaneous optimality criterion is doomed.
Since Stokes flows are reversible, for a net motion to occur, a full non-
reversible cycle in “shape space” must be taken into account2. Any rea-

2One observes frequently in video microscopy that many organisms seem to go back-
wards in part of the cycle; perhaps this common feature is present even in optimal
motions.
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sonable definition of efficiency, e.g., those considered by Lighthill [25] and
Shapere/Wiczek [45], use the full swimming cycle. A technical issue, but
also important, is the assumption of a constant forward velocity in [35, 36].
To be fair, there is one situation in which the assumptions of PK work:
an organism powered by a rotating rigid flagellum; but this can be studied
directly as in [40].

Summarizing: there is a serious difficulty in reconciling instantaneous
with overall motion optimization. This is due to the inherent reversibility
of Stokes flows. In our viewpoint, geometrical control theory is the natural
tool for studying microorganism locomotion.

1.4. Purcell’s paper
E. Purcell coined a delicious terminology (delicious in all senses of the

word): the “scallop paradox”. It describes a no-go situation that results
from any reciprocal strategy.

FIG. 1. Adapted from Fig.5 of [39]. See quotation.
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“Life at low Reynolds number”[39], is one of the 1977 American Journal
of Physics memorable papers (continued posthumously in [40]). The reader
is challenged to describe the motion of the animat depicted in Fig. 2. To-
gether with Fig. 1, also from that paper, the key features of zero Reynolds
number locomotion are masterfully explained.

FIG. 2. Adapted from Fig.7 of [39]. See quotation.

“There is a very funny thing about motion at low Reynolds number, which is
the following. One special kind of swimming motion is what I call a reciprocal
motion. That is to say, I change my body into a certain shape and then I go back
to the original shape by going through the sequence in reverse. At low Reynolds
number, everything reverses just fine. Time, in fact, makes no difference—only
configuration. If I change quickly or slowly, the pattern of motion is exactly the
same. If you take the Navier-Stokes equation and throw away the inertia terms,
all you have left is ∆v = ∇p/η, where p is the pressure (η is the viscosity). So,
if the animal tries to swim by a reciprocal motion, it can’t go anywhere. Fast
or slow, it exactly retraces its trajectory and it’s back where it started. A good
example of that is a scallop. You know, a scallop opens its shell slowly and
closes its shell fast, squirting out water. The moral of this is that the scallop
at low Reynolds number is no good.

It can’t swim because it only has one hinge, and if you have only one degree
of freedom in configuration space, you are bound to make a reciprocal motion.
There is nothing else you can do. The simplest animal that can swim that way
is an animal two hinges. I don’t know whether one exists but Fig. 7 shows a
hypothetical one. This animal is like a boat with a rudder at both front and
back, and nothing else. This animal can swim. All it has to do is go through
the sequence to configurations shown, returning to the original one at S5. Its
configuration space, of course, is two dimensional with coordinates θ1, θ2. The
animal is going around a loop in that configuration space, and that enables it
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to swim. In fact, I worked this one out just for fun and you can prove from
symmetry that it goes along the direction shown in the figure. As an exercise
for the student, what is it that distinguishes that direction?”

We present here an algorithm to perform simulations for this problem,
see section 3. This algorithm is based on simple linear algebra rules gov-
erning the velocities/angular velocities and forces/torques in “Aristotelian
physicics” (section 2). The main goal of this paper is to produce a Hamil-
tonian system giving the optimal motions of a flagellated organism or robot
with N hinges (N + 1 links), see Fig. 3. This is done in section 4.

We will present elsewhere a detailed report on the numerical experiments,
but we present two some illustrative simulations in section 6, showing that
even the simplest case, Purcell’s animat, already presents quite unexpected
motions3. Purcells intuition about the overall motion is indeed remarkable!

FIG. 3. Configuration space for the planar N-hinged swimmer. Shape variables are
θ1, ..., θN . SE(2) variables are x, y, φ, where (x, y) are the coordinates of the cell center
and φ the angle of rod ao with the x-axis. A motion plan {θj(t)} is lifted to a curve of
located shapes satisfying the constraints of zero total force and torque.

The reader may amuse himself (herself) with the simple .m file presented
in the appendix to simulate the 2-hinged Purcell swimmer. We have similar
.m files for the case of N ≥ 3 hinges. A graphic interface is currently being

3As this paper was being written, Greg Huber called our attention to the preprint by
H.Stone et al. [2], which describe similar results on Purcell’s animat.
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prepared to generate and depict movies of the motions. The next stage is
searching for efficient motion plans via genetic algorithms. A more ambi-
tious project (quite intensive computationally), which we plan to pursue
futurely, is a numerical study of the Hamiltonian system giving the optimal
motions.

2. ARISTOTELIAN PHYSICS.

The rise of modern mechanics was an event of monumental magnitude,
leaded by Galileo and Newton. over the last 300 years, students learn
that forces (torques) are proportional to linear (angular) accelerations, in-
stead of linear (angular) velocities. Nonetheless, the Aristotelian viewpoint,
seems somehow to be the default software in college students brains. “We
have to first unteach them their world view of physics, which dates all the
way back to Aristotle” [11].

We think that this frame of mind represents “fossil memories” so it could
actually be fair to pursue a little bit of Aristotelian physics in classroom.
After all, it dominated for more than 3 billion years: as far as life at zero
Reynolds is concerned, Aristoteles is right4. Moreover, there are many
important phenomena in the zero Reynolds regime, from cellular biology to
chemical/environmental engineering (sedimentation processes of particles
in fluids).

Our configuration space Q consists of all rigid bodies q = B inside the
3-dimensional affine space. We may fix an origin O and a reference frame
Oxyz. We identify an element q = B by the position rOP ∈ R3 of a
distinguished material point P on the body together with the attitude
matrix R ∈ SO(3) of a frame attached in the body:

B ↔ (rOP , R) . (1)

Shapes of bodies will be important in the sequel, but no further information
is needed momentarily. Thus the space of all located shapes will be denoted
Q. If we first apply a rotation S ∈ SO(3) about P to the body, and after
that we apply a translation b ∈ R3, it will reach the configuration

g · B ↔ (rOP + b, SR) . (2)

Now, if we apply an infinitesimal rotation ω about P and an infinitesimal
translation t, any point Q in the body will have a linear velocity given
by ω × rPQ + t. Mathematically, this operation represents the action on
Q ∈ B by the element (ω, t) of the Lie algebra sE(3). The affine structure

4If a bacterium flagellum stops rotating, it will coast about 0.1 angstrom in 0.6 mi-
croseconds [39].
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is manifested on the arbitrariness of choice of origin P . We will present
below (Proposition 2) the rules of transformation when another origin is
taken.

If the body moves on fluid and the Reynolds number is so small that the
inertial effects can be neglected, we are in the realm of Aristotelian physics:
whenever the body is subjected to an external force F and torque TP about
the point P , there is a linear relationship between (F,TP) and (UP , ω).
Properties of this map were elucidated by Happel and Brenner[16].

Fix an origin O.

Definition 1. The resistance operator (Purcell cals them “propulsion”
operator) is given by a 6× 6 positive definite matrix G = GO (3× 3 in the
2-dimensional case)

GO = G(B, O) = µ

(
K C†

O

CO ΩO

)
(3)

such that
(

F
TO

)
= G ·

(
UO

ω

)
(4)

where µ is the viscosity. The latter indicates the instantaneous translational
velocity t = UO of the body and its rotational angular velocity ω about
that point O.

It is very important to take note of transformation rules related to the
change of origin. Choose another point P through which both axis of
rotation ω and torque TP are taken (P can be the distinguished point if
we wish). There is a similar equation to (4) where the subscript P replaces
O:

(
F
TP

)
= µ

(
K C†

P

CP ΩP

)
·
(

UP

ω

)
(5)

An elementary (but fundamental) fact is a duality between motions (ge-
ometry) and forces (physics).

• UO depends on the choice of origin:

UP = UO + ω × rOP (6)

ω is a “free vector” (it may set to pass either through point O or P ).
• TO depends on the choice of origin:

TP = TO + F× rOP (7)
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F does not depend on the choice of origin (“free”).

The duality between (UO, ω) and (F,TO) means that the inner product

Power = F ·UO + TO · ω = F ·UP + TP · ω (8)

does not depend on the choice of origin. This quantity represents the
hydrodynamical power expenditure and is the integrand of the optimality
functional.

The power expenditure equation expresses mathematically that veloci-
ties (linear and angular) are tangent vectors, while forces/torques are co-
tangent objects. Consequently, they have dual laws of transformation.

The proof is easy. Note that the net velocity u at every point Q (in the
affine space) must satisfy

u = UO + ω × (Q−O) = UP + ω × (Q− P )

from which (6) follows. The relationship between torques about two differ-
ent points is a well know result from elementary physics (Steiner’s theorem)
and follows by inserting (6) into the duality equation (8). The power ex-
penditure is quadratic in the velocity, and we define the inner product of
v1 = (U1 , ω1)P and v2 = (U2 , ω2)P by

〈v1,v2〉 = (U1 , ω1)P GP

(
U2

ω2

)

P

(9)

Rules for matrix transformation under changes of coordinate frames and
origin can be easily derived. For planar motions, these rules are encoded
by 3× 3 matrices M(x, y, φ).

Proposition 2. Consider an infinitesimal planar motion (ω,V)Oxy ∈
sE(2), refered to origin and frame Oxy. This same infinitesimal motion,
refered to a different origin P = (x, y) (given in terms of Oxy coordinates)
and frame rotated by an angle φ, is described by (v, ω)(P,φ), where

(
v
ω

)

(P,φ)

= M

(
V
ω

)

(0,φ=0)

(10)

where

M(x, y, φ) = R(−φ)T (x, y) (11)

and

R(φ) =




cosφ − sin φ 0
sin φ cos φ 0
0 0 1


 , T (x, y) =




1 0 −y
0 1 x
0 0 1


 (12)
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Dually, the transformation laws for forces and torques are given by the
transpose M†

(
F
τ

)

(O,φ=0)

= T (x, y)†R(φ)
(

F
τ

)

((x,y),φ)

(13)

From these basic results we can easily derive the transformation rules for
resistance matrices, when the base point is changed. For our purposes we
will use only the examples below, of basic importance for our computational
scheme.

Example 3. Stokes laws: the translational resistance coefficient of a
spherical cell of radius r is 6πµr and the rotational coefficient is 8πµr3.
Resistance coefficients for spheroidal cells can be found in [16].

Example 4. The general solution for Stokes flows flows past a gen-
eral tri-axial ellipsoid has beeen found analytically, and by taking lim-
its, approximate formulas for slender rods have been derived. For an
elongated body with with total length 2a and maximum local radius b,
FT = CT 2a , FN = CN2a where

CT ∼ 2πµ

ln(a/b)− 0.5
, CN ∼ 4πµ

ln(a/b) + 0.5
(14)

(see [16], (5-11.50) and (5-11.54)). It follows that the resistance matrix,
giving the force and torque components referred to the center point (at the
origin) of a rod of length a placed horizontally, is given by the diagonal
matrix

D =




CT a 0 0
0 CNa 0
0 0 CNa3/12




That the torque coefficient must be κ = CNa3/3 follows simply by a con-
sistency argument:

a3κω = 2
∫ a/2

0

x(ωx)CNdx = 2CNωa3/24 =⇒ κ =
1
12

CN .

This same resistance operator, refered to the left endpoint, is given by
Go(a; CT , CN ) = MT DM , where

M =




1 0 0
0 1 a/2
0 0 1


 .
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It follows that

Go =




CT a 0 0
0 CNa CNa2/2
0 CNa2/2 CNa3/3


 . (15)

Example 5. As we saw above, the resistance coefficients for a smooth
flagellum in the resistive approximation obey the approximate relationship
[27]

CT /CN ∼ 1
2
, (16)

but this relationship can change drastically. Fig. 4 depicts a flagellum with
mastigonemes. Consider a rectilinear segment of flagellum of length a and
suppose there are K mastigonemes per unit length, each of length b .

FIG. 4. The cummulative effect of the presence of mastigonemes along the flagellar
axis makes the net axial resistance coefficient greater than the transversal coefficient.
Waves propagating from base to tip produce locomotion in that direction. In a smooth
flagellum, such waves produce motions in the opposite direction.

It is easy to verify that the longitudinal force is given by

FT = (CT a + CN b(Ka)) vT (17)

and that the transversal force is

FN = (CN a + CT b(Ka)) vN (18)

Therefore
(

Cm
T

Cm
N

)
=

(
1 bK
bK 1

)(
CT

CN

)
(19)

so

Cm
T /Cm

N =
CT /CN + bK

bKCT /CN + 1
(20)
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and therefore

K →∞ implies Cm
T /Cm

N → CN/CT . (21)

Summary: the point of this section is that there is a duality between
the transformations rules for linear velocities (and angular velocities) and
the rules of transformations for forces (and torques). This is true also in
Newtonian physics, but in Aristotelian physics, there is, additionally, a
linear map - the resistance operator - from the (velocity, angular velocity)
space to its dual (force, torque)-space.

3. RECONSTRUCTION OF LOCATED SHAPES:
CONNECTION FORM

The fundamental insight for self propulsion at low Reynolds number was
masterfully summarized by J. Lighthill in his 1975 John von Neumann
lecture [27]:

“The organism’s motile activity, in fact, is able to specify the instantaneous
rate of deformation of its external surface only to within an arbitrary rigid-
body movement. That movement, comprising a translation and a rotation, is
uniquely determined by the requirement that the forces between the body and
the fluid form a system of forces with zero [force] resultant and zero moment”.

For definiteness, we will restrict the discussion to flagellar locomotion in
a two dimensional plane inside E . Everything extends, in a straightforward
but more numerically intensive (the matrices will be 6×6) manner, to three
dimensional motions. We begin by setting up our terminology.

Definition 6. Input functions: A motion plan is defined by a set of N
periodic functions θ(t) = (θ1(t), ...., θN (t)), 0 ≤ t ≤ T. The closed curve
θ(t) determines a trajectory in the space of unlocated shapes S. We define
the standard gauge as the located shape in which the center of the cell is
always at the origin (say, forced by a lazer tweezer) and the attitude angle
is φ ≡ 0. The space of all located shapes is the product Q = SE(2)× S.

In differential geometric language, Q is the total space of a principal
SE(2)-bundle over the base space S.

Definition 7. Input parameters:

• The lengths of the N + 1 ≥ 2 straight segments ai (i = 0, ..., N)
• The cell radius r.
• The resistance coefficients CT and CN .

Definition 8. Output functions; There are three output or reconstruc-
tion functions (x(t), y(t), φ(t)) ∈ SE(2). The first two give the coordinates
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of the center of the cell, and the attitude φ(t) is the angle of the first segment
with the x-axis. The output functions, together with the input functions,
specify the located shape at any given time.

Our algorithm requires, as intermediary steps, the calculation of the
following functions of θj(t).

Definition 9. Intermediary functions:

• The resistance matrix G (3× 3), an operator that gives the force and
torque corresponding to a rigid motion of the flagellum “frozen” at the
current shape, as discussed in the previous section.
• The forcing matrix A (3 × N), an operator that gives the force and

torque due to the shape change θ̇j (j = 1, ..., N) at the standard gauge.
• The metric matrix K (N×N), which gives the hydrodynamical power

expenditure (of admissible motions)

With G and A on hand we are able to write down the reconstruction
algorithm: for any motion plan, there is a corresponding curve of located
shapes (the “horizontal lift”)

θj(t) 1 ≤ j ≤ N =⇒ (x(t), y(t), φ(t)) ∈ SE(2) .

For its reconstruction, we need only the connection matrix

C = −G−1A (3×N). (22)

With C and K on hand, we can write a Hamiltonian system giving
the optimal motion plans. It yields (as one should expect and we show
in the next section) a second order ODE for the θj(t). An important
feature is the existance of three constants of motion px, py, pφ which allow
trajectories to reach all points of the N +3 dimensional configuration space
(θ1, ...., θn, x, y, φ).

In mathematical terms, the implication from Lighthill’s statement quoted
above is that in 2-dimensions, these are linear constraints for the admissible
infinitesimal displacements of elements of Q. In modern language, they
define a connection on the the space of located shapes5.

The infinitesimal translation and rotation of the cell body resulting from
an infinitesimal shape change θ̇j , 1 ≤ j ≤ n is given by

(v1, v2, φ̇)† = C θ̇ (23)

5We are thinking of two dimensional motions inside R3, so here there is none of the
technical difficulties associated to the Stokes paradox as discused in [44] and [20].
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It is very important to notice that at any particular time instant, the body
is already at a rotated position,

R(φ) =
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
.

Thus, if we denote by e1(φ) and e2(φ) the column vectors of R(φ), then
the infinitesimal translation is given by the vectorfield

(ẋ, ẏ) = v1 e1 + v2 e2 , (24)

where

v1 = C11 θ̇1 + ... + C1N θ̇N , v2 = C21 θ̇1 + ... + C2N θ̇N (25)

The equation for the attitude φ(t) decouples:

φ(t) = φo +
∫ t

0

C31 dθ1 + ... + C3N dθN (26)

By Stoke’s theorem, the latter can be also written as a double integral in
dθi ∧ dθj .

Thus it is possible to solve equation (24) by quadrature, yielding the cell
center position (x(t), y(t)).

Remark 10. Gauge theory experts would say that this is an exceptional
case in which a path ordered integral can be exactly computed. In three
dimensions a quadrature is not feasible in general, so one must solve nu-
merically a time dependent system of linear ODEs, which has the form of
ġ = gX(t), with g ∈ SE(3) for a given curve X(t) in the Lie algebra.

Why C = G−1A ? We now state our basic result:

Proposition 11. The connection formula. In self propulsion, in terms
of our standard gauge, at any time instant one has

G




v1

v2

φ̇




︸ ︷︷ ︸
force due to rigid motion

+ A




θ̇1

...

θ̇N




︸ ︷︷ ︸
force due to shape deformation

= 0 (27)

hence C = −G−1A (note the minus sign!).
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4. OPTIMAL MOTIONS.

Recall that a sub-Riemannian geometry consists of a metric (i.e, a La-
grangian L on a configuration space Q consisting only on the kinetic energy
term T ), together with a constraints distribution, i.e, a linear subspace
of every tangent space. A special case of interest is when a symmetry
group G acts on Q and the constraints define a connection on a bundle
Q → S. In differential geometric jargon, we have a vector bundle of hor-
izontal spaces consisting of the admissible infinitesimal motions. In our
case, the Lagrangian is given by the hydrodynamical dissipation (which is,
indeed, quadratic in the velocity) and the admissible infinitesimal changes
of located shapes (those for which the total force and total torque vanish).

We use the standard notation for tangent vectors from differential geom-
etry and nonlinear control theory: vectors act on functions by directional
derivative, ∂/∂xj denotes the vector such that ∂/∂xj · f = ∂f/∂xj in
coordinates (x1, ..., xn).

Motions in which the body do not change shape are called rigid or vertical
motions in Q. The vertical fibers are diffeomorphic to the euclidian group.
The base space of this bundle is called the shape space.

There are two geometrical facts that are fundamental here, see [20].

Proposition 12. The connection form is of “mechanical type” and has
full curvature. More precisely,

1.The infinitesimal vertical motions are perpendicular (with respect to
the power expenditure metric) to the admissible motions. We say that the
connection is of “mechanical type”.

2.The horizontal spaces are fully nonintegrable (also said to be fully non-
holonomic.)

Remark 13. i) By Chow’s theorem of nonlinear control theory [32], it
follows that every pair of located shapes can be connected by a piecewise
smooth admissible path. ii) That connections on a constrained problem
are frequently of mechanical type with regards to underlying metric is a
most remarkable feature [31]. In our problem, this follows from the reci-
procity formula for Stokes equations, found by H.A. Lorentz in 1907, which
is analogous to Green’s identity in potential theory. A proof of the second
statement is in order; ( for us this fact is a question of faith). Indeed, an in-
teresting research project would be to compute the Lie bracket filtration in
the general case. For Purcell’s animat, we believe it will realize of Cartan’s
famous 2-3-5 distribution.

We can now give the recipie for the Hamiltonian. First, we take a basis
of vectorfields X1, ..., XN for the horizontal spaces, given by

Xj = ∂/∂θj + c1je1(φ) + c2je2(φ) + c3j∂/∂φ , 1 ≤ j ≤ N . (28)
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That Xj are horizontal follows immediately from (23).
Any located shape infinitesimal change can be written

v = u1X1 + ... + uNXN + z1e1 + z2e2 + z3∂/∂φ . (29)

As we saw, it follows from the Lorentz reciprocity formula that the hori-
zontal vectors Xj are perpendicular to the vertical displacements

∂/∂x, ∂/∂y, ∂/∂φ .

It is important to take note of the coordinate change formulae. Vector v
can also be written

v = vq = θ̇1∂/∂θ1 + ... + θ̇N∂/∂θN + w1e1 + w2e2 + w3∂/∂φ, (30)

where w3 = φ̇ (and w1 = ẋ when e1 = ∂/∂x, w2 = ẏ when e2 = ∂/∂y). It
is immediate to see that uj = θ̇j and

z1 = w1 −
(
c11θ̇1 + ... + c1N θ̇N

)

z2 = w2 −
(
c21θ̇1 + ... + c2N θ̇N

)
(31)

z3 = φ̇−
(
c31θ̇1 + ... + c3N θ̇N

)
.

Now, we inforce the constraints by introducing a penalization on verti-
cal motions. Let λ → ∞ a increasingly large parameter. The penalized
Lagrangian is given by (the factor of 2 is just for convenience)

Lλ(v, v) =
1
2

∑

i,j=1,...,N

kij u2
i u

2
j + λ(fiber metric) (32)

where (the brackets below indicate the power expenditure metric)

kij = 〈Xi, Xj〉 (33)

The rationale is to make motions along the fiber (i.e., rigid displacements,
without any change of shape) extremely expensive. As λ →∞, we expect
that z1, z2, z3 → 0 on the optimal motions, so from equations (31) the
constraints are inforced.

Furthermore, since the Lagrangian Lλ is invariant under the euclidian
group SE(2), by Noether’s theorem, we get the three usual conserved mo-
menta:

px , py , pφ
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whose expressions in terms of the velocities will be given shortly, see (37)
below.

The Legendre transformation from the generalized velocities uj (also
called “quasi-velocities” in the nonholonomic systems literature) velocities
to their corresponding momenta mj is given by

(m1, ..., mN )† = K · (u1, ..., uN )† (34)

The mj are the ordinary momenta pθj
with added “magnetic type” terms,

mj = pθj + c1jpx + c2jpy + c3jpφ , 1 ≤ j ≤ N . (35)

This follows from equations (29, 30, 31), by dualization.
Here is the punch line:

Proposition 14. Optimal motions:

1.Optimal motions obey the Hamiltonian system, depending on parame-
ters px, py, pφ, defined on the reduced phase space {(θ1, ...θN , pθ1 , ..., pθN )}
with Hamiltonian

H =
1
2
(m1...mN )




k11 ... k1N

... ... ...
kN1 ... kNN



−1 


m1

...
mN


 . (36)

2.The conserved momenta px py pφ are given in terms of the velocities by




px

py

pφ


 = G




λz1

λz2

λz3


 (37)

where G, in our problem, is the resistance operator.

It is important to notice that as z1, z2, z3 → 0 and λ →∞ in such a way
that the conserved momenta may have finite, arbitrary, values.

Remark 15. Hertz already noticed in his book [17] on the “Foundations
of Mechanics”, that constrained variational problems must, and will, have
such compensating features. The space of allowed infinitesimal motions
has co-dimension three (there are three constraints). The presence of three
arbitrary parameters provides a three dimensional pencil of solutions for
every initial position and admissible velocity. Therefore, it remains possible
that every pair of points in the configuration space of located shapes to be
joined by a sub-Riemannian geodesic (actually, by a zig-zag of such arcs).
For technical details, see Montgomery[32].
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5. THE MATRICES G, A, K

This section contains our best kept secrets. As we saw in section 3, all
the relevant quantities (torques and translational velocities) will be refered
to a same origin and frame. We found to be convenient choosing 0 (the
center of the cell) and the standard gauge φ = 0. Changes of origin and
frame are easily implemented, multiplying by matrices of type M on the
right (see (11) and Proposition 2) and M† on the left.

We make use of an approximate additivity property (see Purcell[39],
Figs.13 and 14): “if two ... devices ... are far enough from one another so
that their velocity patterns don’t interact, their propulsive matrices just
add”. Actually this result is mathematically valid to first order, even if
the pieces in consideration are close to each other. In the context of flag-
ellar motion, this follows from slender body approximation formulas by
Lighthill [29]. Therefore, we can write the resistance matrix as a sum of
positive definite matrices

G = Gcell + Go + G1 + ... + GN , (38)

where the Gk can be recursively computed using the positions Ok of the
k-th pivot and the angle φk of the k-th segment with the x-axis:

φo = θo = 0 , φj = φj−1 + θj , 1 ≤ j ≤ N (39)

Oo = 0 , Oj = Oj−1 + aj−1 exp(iφj−1) , 1 ≤ j ≤ N (40)

Go = Go(ao) , Gk = T t(Ok)R(φk)Go(ak)R(−φk)T (Ok) (41)

The cell resistance matrix Gcell (see Example 3) may or may not be in-
cluded.

To compute the 3 ×N momentum matrix A, note that its k-th column
Ak gives the two force components and by the torque (refered to O and
gauge φ = 0) produced by the angular rotation (with angular velocity = 1)
around the k-th hinge. Using the same general recipie for (38), we com-
pute the resistance matrix Gk−>N of the remaining piece of the flagellum,
namely the ensemble of the last N − k + 1 rods. Actually, we need just
the third column of Gk−>N , since the element (0, 0, 1) of the Lie algebra
sE(2) represents unit rotation around a hinge. Multiplying on the left
by M(xk, yk, φk)†, we refer this torque and force to the cell’s center (the
reference point).

Finally, in order to evaluate kij = 〈Xi, Xj〉 we explore the orthogonality
between horizontal and vertical subspaces. We have

〈Xi, Xj〉 = 〈 ∂

∂θi
,

∂

∂θj
〉+ 〈c1j

∂

∂x
+ c2j

∂

∂y
+ c3j

∂

∂φ
,

∂

∂θi
〉 ,
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or equivalently,

〈Xi, Xj〉 = 〈 ∂

∂θi
,

∂

∂θj
〉+ 〈c1i

∂

∂x
+ c2i

∂

∂y
+ c3i

∂

∂φ
,

∂

∂θj
〉 .

The inner products appearing above,

〈 ∂

∂θi
,

∂

∂θj
〉, 〈 ∂

∂θj
,

∂

∂x
〉, 〈 ∂

∂θj
,

∂

∂y
〉, 〈 ∂

∂θj
,

∂

∂φ
〉

can be obtained by the matrix algebra rules in section 2. We must compute
the contribution of each of the N + 1 rods k = 0, ..., N . At rod k, we refer
the velocity vectors to its left-end point, and we use matrix Go given by
(15) to calculate the inner products.

More preciselly, let us show how 〈∂/∂θj , V 〉 are calculated. Here V is
any one of the vectorfields ∂/∂θi, ∂/∂x, ∂/∂y, ∂/∂φ.

First of all, only the rods ak with k ≥ j contribute, because the action
of ∂/∂θj does not affect the previous rods. In fact, this action consists
on the rotation with unit angular velocity around hinge j of the “frozen”
subsequent links. This element of sE(2) is represented in the frame of rod
k by

R(−φk)T (Ok −Oj)(0, 0, 1)†

The vectorfields ∂/∂x and ∂/∂y do not change their form, i.e., are repre-
sented for all rods by (1, 0, 0) and (0, 1, 0). The vectorfield ∂/∂φ is repre-
sented in the frame of rod k as

R(−φk)T (Ok)(0, 0, 1)†

Thus, for instance

〈∂/∂θj , ∂/∂φ〉 =
∑

k≥j

(0, 0, 1)T †(Ok)R(φk)GoR(−φk)T (Ok −Oj)(0, 0, 1)†

or equivalently

〈∂/∂θj , ∂/∂φ〉 =
∑

k≥j

[T †(Ok)R(φk)GoR(−φk)T (Ok −Oj)]33 .

The calculation of 〈∂/∂θi, ∂/∂θj〉 goes along similar lines. Note that only
rods ak with k ≥ max{i, j} contribute, and we just showed how rotations
around one hinge are represented when seen in the frame of another one.

We can provide a Matlab .m file for the interested reader.
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6. SIMULATIONS

We present the results of three numerical simulations. The first is just a
check, taking a2 = 0, and the result (See Table 1) verifies Purcell’s oyster
paradox. Simulations 2 and 3 describe the locomotion of Purcell’s animat
(with three equal segments of length 1) through a cycle in shape space
where the maximum absolute value of the angles between the segments is
α = π/4 and α = π/40, respectively. Note the factor of 1/100.

The parameters are are ak = 1, r = 0, CN = 2, CT = 1. The motion plan
is given by

θ1 = α cos(t) , θ2 = α sin(t) .

Data from the second and third columns of Tables 2 and 3 are depicted
in Fig. 5 and Fig. 6. We draw only the (x, y) positions of the left hand
point O.

Note that the net y displacement is zero (up to numerical error, we
have not worried about streamlining the ODE solver), but the motion is
somewhat skewed. This feature disappears if one depicts the motion of the
middle point of the second segment. Note also that the animat seems to
move like a basketball or soccer player, dribbling back and forward during
the cycle. The net x motion is in the negative direction (although it starts
moving in the positive x-diretion). This confirms Purcell’s intuition. We
got the opposite directionm of what he says, but remember that our cycle
is traversed in reciprocal time, so everything fits.

Quantitatively, note that the net x displacemente for the second simu-
lation is almost exactly 1/100 of the first. Again, this fits well with the
geometrical insight, since the area in the shape space was reduced by this
factor. The net locomotion in Table 2 is about 1/30 of the total length, so
if the flagellum does 60 cycles per second (this is the order of magnitude
on a flagellum) it will move 2 lengths per second, which is roughly what is
observed in spermatozoa.
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TABLE 1.

Scallop: a2 = 0 (α = π/4) .

t x y φ

* 0 0 0 -1.5707963

0.00005 0.00002 -0.00001 -1.5708357

0.00045 0.00023 -0.00011 -1.5711513

0.00246 0.00128 -0.00064 -1.5727273

0.01250 0.00651 -0.00329 -1.5805593

0.06274 0.03191 -0.01690 -1.6184996

0.31393 0.13779 -0.08569 -1.7749479

0.94199 0.21126 -0.14365 -1.8825258

** 1.57031 0.00025 0.00000 -1.57116964

2.19863 -0.36085 0.03195 -0.9596754

2.82694 -0.50802 -0.26965 -0.2816133

3.455268 -0.36506 -0.58839 0.2040200

4.08358 -0.30704 -0.66196 0.3117292

4.71190 -0.45069 -0.45095 0.0003730

5.34022 -0.48265 -0.08984 -0.6111211

5.49730 -0.43264 -0.01840 -0.7848622

5.65438 -0.36133 0.03174 -0.9586152

5.81146 -0.27484 0.05712 -1.1281185

5.92939 -0.20469 0.05954 -1.2500479

6.047323 -0.13366 0.04917 -1.3655193

6.165254 -0.06463 0.02831 -1.4729317

** 6.28318 -0.00000 -0.00000 -1.5707963

NOTES
* This simulation is only a check.

** After the full cycle, there is no net motions.
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TABLE 2.

Purcell’s animat, no cell: a1 = a2 = a3 = 1 α = π/4 .

* t x y φ

0 0 0 -0.78539

0.00010 0.00001 0.00001 -0.78542

0.00070 0.00007 0.00010 -0.78555

0.00371 0.00041 0.00054 -0.78620

0.01878 0.00205 0.00271 -0.78940

0.09414 0.00947 0.01267 -0.80329

0.47092 0.02257 0.03977 -0.81812

1.09907 -0.04643 -0.00435 -0.65031

1.72739 -0.15950 -0.16238 -0.32124

2.51279 -0.21050 -0.44240 0.13315

3.14110 -0.18101 -0.61164 0.37342

3.61234 -0.17621 -0.65721 0.40628

4.08358 -0.20699 -0.61968 0.30002

4.5548 -0.24894 -0.50521 0.08667

5.02606 -0.26051 -0.34158 -0.1841

5.49730 -0.21982 -0.17219 -0.46083

5.92939 -0.15215 -0.04713 -0.67282

6.16525 -0.11656 0.00212 -0.75546

** 6.28318 -0.10195 0.02129 -0.78539

NOTES
* This simulation runs in the opposite time direction from Purcell’s.

** After the full cycle, there is a net x motion of about 1/30 of the length.
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TABLE 3.

Purcell’s animat, no cell: a1 = a2 = a3 = 1 α = π/40 .

* t x y φ

0 0 0 -0.078539816

0.000050237 0.000000057 0.000000875 -0.078540839

0.000100475 0.000000114 0.000001750 -0.078541863

0.000452139 0.000000516 0.000007875 -0.078549023

0.001205705 0.000001375 0.000020985 -0.078564342

0.004973535 0.000005650 0.000086239 -0.078640442

0.018788910 0.000021032 0.000321257 -0.078912384

0.062746923 0.000066796 0.001024211 -0.079703039

0.156942664 0.00014732 0.002295835 -0.081009390

0.627921370 0.000129396 0.003598647 -0.079407504

1.570312435 -0.001489793 -0.017373982 -0.040756029

2.041551333 -0.002163585 -0.035101757 -0.012134206

2.512790231 -0.002307672 -0.052781546 0.014697665

3.455268027 -0.001945127 -0.073408339 0.041258741

4.397745823 -0.002573515 -0.062230378 0.017002137

4.868984721 -0.002843567 -0.046631056 -0.009319842

5.340223619 -0.002608495 -0.028465369 -0.038047271

5.811462517 -0.001912090 -0.011700216 -0.062925285

5.929393215 -0.001712180 -0.008170896 -0.067876081

6.165254609 -0.001344475 -0.002267958 -0.075738010

6.283185307 -0.001194395 0.000024324 -0.078539813

NOTES
* This simulation runs in the opposite time direction from Purcell’s.

** After the full cycle, there is a net x motion of about 1/100 of the previous.
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FIG. 5. (x, y) values for one cycle (no cell). Here α = π/4.

FIG. 6. (x, y) values one cycle (no cell). Here α = π/40.
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7. CONCLUSIONS AND DIRECTIONS.

We presented in this paper: i) a simple method not only to describe
the kinematics of flagellary locomotion; ii) the Hamiltonian for the optimal
motions, using sub-Riemannian geometry. For simplicity, we modeled the
flagellum as a sequence of concatenated segments. The description can
be easily extended for the case of a continous flagellum; presently (work
in progress) we are studying flagellary motions where, at any given time
snapshot, the flagellum has the shape of concatenated circular arcs [15, 9].

Observe that all that matters for the fundamental connection formula of
self propulsion (27) is the ratio CN/CT between the resistance coefficients,
and not their actual values. For this reason, we believe that the the results
using the resistive theory will be essentially the same as using more refined
fluid dynamical treatment.

At any rate, efficient numerical methods for Stokes flows are available,
based either on boundary integral formulations [38] or distributions of sin-
gularities (along the flagellum centerline). A comparison is in order. In
particular, Lighthill’s method of singularities [29] is accurate to second or-
der in the slenderness, the ratio of the flagellum diameter to total length,
and has been recently extended by Liron [30] to multi-cilia configurations.

Recent discoveries (since about ten years ago) in cell biology spurred a
surge of interest on the physical modeling of molecular motors [46, 34]. The
molecular motor dynein is responsible for the microtubule sliding inside the
flagellar axoneme[49]. A more refined use of fluid mechanics, as suggested
by Lighthill, may allow to deduce the location and intensities of the dynein
action from knowing merely the kinematical data?

We finish by quoting the prophetic statement by J. Lighthill in [27], p.
165:

“It is therefore arguable that the results of any calculations in flagellar hy-
drodynamics should, where possible, be given in two forms: on theone hand
in terms of a “best possible representation through resistance coefficients”, and
on the other hand in any fuller and more accurate manner such as may be
achieved through any more complicated method of representation, possibly for
use in studies of a more refined nature.”

Steps in this direction have been achieved by Lisa Fauci and collab-
orators, using Peskin’s immersed boundary approach for Navier-Stokes
equations[14]. In the context of Stokes equations (zero Reynolds), we
think that it is possible to justify Peskin’s method from first principles
(presently, in the immersed boundary method, a Navier-Stokes numerical
solver is used). Our idea is to model the hydrodynamical dissipation as
a Rayleigh function, in addition to the conservative Lagrangian modeling
the axoneme.
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APPENDIX: A MATLAB FILE FOR PURCELL’S ANIMAT.

% command to be used in Matlab prompt:
% [T,Y] = ode45(@xyphidot,[0, 2*pi],[0 0 0 -alpha],

% [],a1,a2,a3,ct,cn,alpha,r)
% alternative: use quad to integrate phidot, xdot, ydot
% -------------------------------------------------------
function dy = xyphidot(t,y,a1,a2,a3,ct,cn,alpha,r)
% parameter alpha in [0,pi] "size" of shape space disk
dy = zeros(4,1);
R = zeros(3,3);
% shape space curve
% one can make many other choices)

theta1 = alpha * cos(y(1));
theta2 = alpha * sin(y(1)) ;
theta1dot = - alpha * sin(y(1));
theta2dot = alpha * cos(y(1)) ;

% matrix H 3X2 of UNlocalized Hinges
% H = [x1 y1; x2 y2; x3 y3];
phi1 = theta1;
phi2 = theta1 + theta2;
x1 = a1;
y1 = 0;
x2 = x1 + a2 * cos(phi1) ;
y2 = y1 + a2 * sin(phi1) ;
% x3 = x2 + a3 * cos(phi2);
% y3 = y2 + a3 * sin(phi2);
% Resistance matrices
Go = [6*pi*r 0 0; 0 6*pi*r 0; 0 0 8*pi*(r^3)];

% cell resistance matrix
G1 = [a1*ct 0 0; 0 a1*cn (a1^2)*cn/2;

0 (a1^2)*cn/2 (a1^3)*cn/3];
G2 = [a2*ct 0 0; 0 a2*cn (a2^2)*cn/2;

0 (a2^2)*cn/2 (a2^3)*cn/3];
G3 = [a3*ct 0 0; 0 a3*cn (a3^2)*cn/2;

0 (a3^2)*cn/2 (a3^3)*cn/3];
T1 = [1 0 -y1; 0 1 x1; 0 0 1];
T2 = [1 0 -y2; 0 1 x2; 0 0 1];
T12 = [1 0 0; 0 1 a2; 0 0 1];
R1 = [cos(phi1) -sin(phi1) 0; sin(phi1) cos(phi1) 0; 0 0 1];
R2 = [cos(phi2) -sin(phi2) 0; sin(phi2) cos(phi2) 0; 0 0 1];
R12 = [cos(theta2) -sin(theta2) 0;

sin(theta2) cos(theta2) 0; 0 0 1];
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% ----------------------------------------------------------
% resistance matrix and its inverse
G = G0 + G1 + T1’*R1*G2*R1’*T1 + T2’*R2*G3*R2’*T2;
GINV = [1 0 0; 0 1 0; 0 0 1]/G
% force matrix A and connection matrix C
GG = G2 + T12’*R12*G3*R12’*T12;
A1 = T1’*R1*GG*[0;0;1];
A2 = T2’*R2*G3*[0;0;1];
C1 = - GINV*A1;
C2 = - GINV*A2;
C = [C1(1),C2(1); C1(2) C2(2); C1(3) C2(3)];
% ----------------------------------------------------------
% control rule at standard gauge
R = [cos(y(4)) -sin(y(4)) 0 ; sin(y(4)) cos(y(4)) 0 ; 0 0 1];
CC = C * [theta1dot ; theta2dot];
dy = [1; R*CC];
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