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Let T : [0, 1] → [0, 1] be a unimodal map with positive topological entropy.
Then T has a unique measure µ(T ) of maximal entropy. It is proved that the
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1. INTRODUCTION

A map T : [0, 1] → [0, 1] is called a unimodal map, if T is continuous
and there is a c ∈ (0, 1), such that T |[0,c] is strictly increasing and T |[c,1]

is strictly decreasing (or T |[0,c] is strictly decreasing and T |[c,1] is strictly
increasing). Consider the set of all unimodal maps endowed with the C0–
topology. If T is a unimodal map, then we assign a measure µ(T ) of
maximal entropy to T . In this paper continuity properties of this map T 7→
µ(T ) are investigated.

First we address the question, if the measure of maximal entropy is
unique. Franz Hofbauer derived in [2] from his results in [1] that every
unimodal map with positive entropy has a unique measure of maximal
entropy. We will give a simpler proof of this result in Theorem 5.

It has been shown by MichaÃl Misiurewicz in Theorem 2 of [4] that the
map T 7→ htop(T ), where htop(T ) is the topological entropy of T , is contin-
uous on the set of all unimodal maps with positive entropy. On the other
hand there are continuous functions f : [0, 1] → R, such that T 7→ p(T, f),
where p(T, f) denotes the topological pressure, is not continuous (see [11])
on the set of all unimodal maps with positive entropy.
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However, results on the continuity of the measure of maximal entropy
with respect to the weak star–topology are known, if we consider another
topology on a suitable subset of the collection of all unimodal maps. Con-
sider the set of all C1–unimodal maps satisfying T ′x 6= 0 for all x 6= c
endowed with the C1–topology. Then the subset of all maps with positive
entropy is open by Theorem 5 of [6]. The map T 7→ µ(T ) is continuous on
this subset by Theorem 3 in [9].

We will prove in Theorem 7 (and Corollary 8) that the map T 7→ µ(T ) is
continuous with respect to the weak star–topology on the set of all unimodal
maps with positive topological entropy (endowed with the C0–topology).
Obviously Theorem 7 implies the result on the C1–continuity of the mea-
sure of maximal entropy mentioned above. For the proof two oriented
graphs are introduced (one of this graphs, Hofbauer’s Markov diagram, is
used to prove the uniqueness of the measure of maximal entropy in The-
orem 5), and to each graph a matrix is assigned. In Lemma 6 a relation
between the spectral radii of these matrices is proved. This result implies
the continuity of the measure of maximal entropy (and also the continuity
of the topological entropy).

2. UNIMODAL MAPS

Suppose that X is a finite union of closed intervals. We call Z a finite
partition of X, if Z consists of finitely many pairwise disjoint open intervals
with

⋃
Z∈Z Z = X. A map T : X → R is called piecewise monotonic with

respect to the finite partition Z of X, if T |Z is strictly monotonic, bounded
and continuous for all Z ∈ Z. If T : X → R is a piecewise monotonic map
with respect to the finite partition Z, then we call Z the minimal partition
for T , if cardY ≥ cardZ for every finite partition Y of X, such that T is
piecewise monotonic with respect to Y. Then every finite partition Y of X
satisfying that T is piecewise monotonic with respect to Y, is a refinement
of Z.

A continuous map T : [0, 1] → [0, 1] is called a unimodal map, if there
exists a finite partition Z of [0, 1] with cardZ = 2, such that T is piecewise
monotonic with respect to Z and Z is the minimal partition for T . Then
there exists a c ∈ (0, 1), such that either T is strictly increasing on [0, c] and
strictly decreasing on [c, 1] (first type), or T is strictly decreasing on [0, c]
and strictly increasing on [c, 1] (second type). If T is of the second type,
then h(x) = 1 − x conjugates T to a map of the first type. Therefore in
the proofs we may always assume that T is of the first type.

In order to define a topology on piecewise monotonic maps (cf. [5] and
[7]) we define the following notion. For ε > 0 two continuous functions
f : [a, b] → R and f̃ : [ã, b̃] → R are called ε–close, if
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• |a− ã| < ε and |b− b̃| < ε,
• |f(x)− f̃(x)| < ε for all x ∈ [a, b] ∩ [ã, b̃],
• supx∈[a,ã] |f(x)− f̃(ã)| < ε, if a < ã, or supx∈[ã,a] |f̃(x)− f(a)| < ε, if

otherwise ã ≤ a,
• supx∈[b̃,b] |f(x) − f̃(b̃)| < ε, if b̃ < b, or supx∈[b,b̃] |f̃(x) − f(b)| < ε, if

otherwise b ≤ b̃.

Observe that, if ε is small enough, then (a, b) ∩ (ã, b̃) 6= ∅.
Assume that X and X̃ are finite unions of closed intervals. Let T :

X → R be piecewise monotonic with respect to the finite partition Z
of X, and let T̃ : X̃ → R be piecewise monotonic with respect to the
finite partition Z̃ of X̃. We may assume that Z = {Z1, Z2, . . . , ZK} with
Z1 < Z2 < · · · < ZK and Z̃ = {Z̃1, Z̃2, . . . , Z̃K̃} with Z̃1 < Z̃2 < · · · < Z̃K̃ .
For j ∈ {1, 2, . . . , K} let Tj : Zj → R be the unique continuous function
with Tj |Zj

= T |Zj
, and for j ∈ {1, 2, . . . , K̃} let T̃j : Z̃j → R be the unique

continuous function with T̃j |Z̃j
= T̃ |Z̃j

. Suppose that ε > 0. Then (T,Z)
and (T̃ , Z̃) are said to be ε–close in the R0–topology, if

• cardZ = card Z̃, and
• Tj and T̃j are ε–close in the sense defined above for j = 1, 2, . . . , K.

Let T : [0, 1] → [0, 1] be a unimodal map, and suppose that Z is the
minimal partition for T . Then for every ε > 0 there exists a δ > 0, such
that every unimodal map T̃ : [0, 1] → [0, 1] with minimal partition Z̃ and
‖T̃ − T‖∞ < δ satisfies that (T,Z) and (T̃ , Z̃) are ε–close in the R0–
topology, where ‖f‖∞ := supx∈[0,1]

∣∣f(x)
∣∣. Moreover, T̃ is of the first type,

if and only if T is of the first type.
A topological dynamical system (X,T ) is a continuous map T of a com-

pact metric space X into itself. The definition of the topological en-
tropy htop(T ) can be found in § 7.1 and § 7.2 of [12], and the definition
of the measure–theoretic entropy hµ(T ) of a T–invariant Borel probability
measure µ on X can be found in § 4.4 of [12]. According to the variational
principle (see e.g. Theorem 8.6 of [12]) we have htop(T ) = supµ hµ(T ),
where the supremum is taken over all T–invariant Borel probability mea-
sures µ on X. A T–invariant Borel probability measure µ on X is called a
measure of maximal entropy of T , if hµ(T ) = htop(T ).

Although unimodal maps T are topological dynamical systems, this need
not be true for small perturbations T̃ of T in the R0–topology, because
T̃ need not be continuous. In this case the definition of the topological
entropy htop(T̃ ) can be found in [7], and the definition of a measure of
maximal entropy of T̃ can be found in [8].
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3. THE MARKOV DIAGRAM AND THE GRAPH (G, →)

We will describe two at most countable oriented graphs associated to a
unimodal map T . The first one is the Markov diagram (D,→), which was
introduced in [2] (see also [3]) in order to describe the orbit structure of T .
Another oriented graph (G,→) has been introduced in [7] (cf. also [5])
in order to describe the behaviour of the dynamics of small perturbations
of T .

At first we define the Markov diagram. Let T : [0, 1] → [0, 1] be a
unimodal map, and let Z be the minimal partition for T . Assume that
Z0 ∈ Z and that D is an open subinterval of Z0. We call a nonempty C ⊆
[0, 1] successor of D, if there exists a Z ∈ Z with C = TD ∩ Z, and we
write D → C. Every successor C of D is again an open subinterval of an
element of Z. Let D be the smallest set with Z ⊆ D and such that D ∈ D
and D → C imply C ∈ D. Then (D,→) is called the Markov diagram of T .
The set D is at most countable and its elements are open subintervals of
elements of Z.

In [7] an oriented graph (G,→) is introduced in order to describe the
jumps up of the topological entropy (see also [5]). Again suppose that
T : [0, 1] → [0, 1] is a unimodal map. Define G :=

({Tnc : n ∈ N} \ {c}) ∪
{c−, c+}, where we assume that c− 6= c+. For a, b ∈ G we introduce an
arrow a → b, if and only if b = Ta, or b = Tc and a ∈ {c−, c+}, or c = Ta
and b ∈ {c−, c+}, or Tc = c and a, b ∈ {c−, c+}.

Let (H,→) be an oriented graph. For n ∈ N we call c0 → c1 → · · · → cn

a path of length n in H, if cj ∈ H for j ∈ {0, 1, . . . , n} and cj−1 → cj

for j ∈ {1, 2, . . . , n}. We call c0 → c1 → c2 → · · · an infinite path in H,
if cj ∈ H for all j ∈ N0 and cj−1 → cj for all j ∈ N. The oriented
graph H is called irreducible, if for every c, d ∈ H there exists a finite path
c0 → c1 → · · · → cn in H with c0 = c and cn = d. An irreducible subset C
of H is called maximal irreducible in H, if every C′ with C ⊂ C′ ⊆ H is not
irreducible.

We define the H×H–matrix MH :=
(
Mc,d

)
c,d∈H by

Mc,d :=
{

1 if c → d,
0 otherwise. (1)

If u 7→ uMH is a continuous linear operator on `1(H), then denote by ‖MH‖
its norm and by r(MH) its spectral radius. Observe that u 7→ uMH is a
continuous linear operator on `1(H), if H is finite (this is obvious) or H is
a subset of the Markov diagram of a piecewise monotonic map (in this case
see p. 371 of [3]) or H is a subset of the oriented graph (G,→) associated to



CONTINUITY OF THE MAXIMAL MEASURE FOR UNIMODAL MAPS 71

a piecewise monotonic map in [7] (in this case see p. 105 of [7]). We have

‖MHn‖ = sup
c∈H

card {c0 = c → c1 → · · · → cn is a path of length n in H}

(2)

and

r(MH) = lim
n→∞

‖MHn‖ 1
n = inf

n∈N
‖MHn‖ 1

n , (3)

whenever u 7→ uMH is a continuous linear operator on `1(H).
The following result gives a lower bound for r(MC), if C is a finite and

irreducible oriented graph. We omit the proof, because it is a simple exer-
cise for zero-one-matrices (the result is also a simple consequence of results
in [4]).

Lemma 1. Suppose that (C,→) is an irreducible oriented graph with
card C = n, such that there exists a c ∈ C having at least two different
successors in C. Then

r(MC) ≥ λn >
n
√

2 ,

where λn is the largest root of the polynomial xn − x− 1.

Remark. Observe that the property, that there exists a c ∈ C having
at least two different successors in C, is equivalent to r(MC) > 1.

Now we calculate r(MG) for a unimodal map, where (G,→) is the oriented
graph introduced above. Recall that c is the unique real number, such that{
(0, c), (c, 1)

}
is the minimal partition for T . Define p(c) := min{n ∈ N :

Tnc = c}, where we set p(c) := ∞, if Tnc 6= c for all n ∈ N.

Lemma 2. Let T : [0, 1] → [0, 1] be a unimodal map.

•If p(c) = ∞, then r(MG) = 1.
•Suppose that p(c) = n ∈ N. Then r(MG) = n

√
2.

Proof. If p(c) := ∞, then every element of G has exactly one successor.
Hence (2) and (3) imply r(MG) = 1. In the case p(c) = n ∈ N the
characteristic polynomial of MG equals (−1)n+1(xn+1 − 2x), and therefore
r(MG) = n

√
2.

Suppose that T : [0, 1] → [0, 1] is a unimodal map. Let (D,→) be the
Markov diagram of T . By Theorem 7 in [3] we get

htop(T ) = log r(MD) . (4)
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We will need the following result, which calculates the Markov diagram
in a certain special case of a unimodal map.

Lemma 3. Let T : [0, 1] → [0, 1] be a unimodal map of the first type, and
suppose that T 3c < T 2c < c < Tc. Then p(c) = ∞. Define B1 := (c, T c)
and for n ∈ N, n > 1 set Bn := (Tnc, c). Then we have Bn → B1 and
Bn → Bn+1 for every n ∈ N. Moreover, the Markov diagram (D,→)
of T has a unique maximal irreducible C ⊆ D with r(MC) > 1. We have
C = {Bn : n ∈ N} and r(MC) = r(MD) = 2.

Proof. As T 3c < T 2c < c we get by induction that (Tnc)n≥2 is strictly
decreasing. This implies that Tnc < c for all n ≥ 2, and therefore p(c) = ∞.
Since 0 < T 2c and T1 ≤ T 2c (because Tc ≤ 1) we obtain Tn0 < T 2c for
all n ≥ 0 and Tn1 < T 2c for all n ≥ 2. By its definition TB1 := (T 2c, T c),
and TBn := (Tn+1c, T c) for n > 1. Hence Bn → B1 and Bn → Bn+1

for every n, and C = {Bn : n ∈ N} is irreducible. An easy induction
shows that for every D ∈ D there is a j ≥ 0, such that T jc is an endpoint
of D. This shows that if D has two different successors, then at least
one of these successors must be in C. Therefore r(MC′) = 1 for every
maximal irreducible C′ ⊆ D with C′ 6= C. Fix C ∈ C and n ∈ N. Since
every D ∈ C has exactly two successors in C, there are exactly 2n different
paths C0 → C1 → · · · → Cn of length n in C with C0 = C. Now (2) and
(3) imply r(MC) = 2.

Next assume that T is of the first type and that htop(T ) > 0. We claim
that T 2c < c < Tc. If Tc ≤ c, then T [0, 1] ⊆ [0, c]. Therefore every
C ∈ D has exactly one successor. Now (2) and (3) imply r(MD) = 1,
which contradicts (4). If T 2c ≥ c, then c ≤ Tc and T [c, T c] ⊆ [c, T c]. Since
T [0, 1] ⊆ [0, T c] for every C ∈ D there are at most n + 1 different paths
C0 → C1 → · · · → Cn of length n in D with C0 = C. Again (2) and (3)
imply r(MD) = 1 contradicting (4).

Moreover, observe that T [T 2c, T c] ⊆ [T 2c, T c], if T 3c ≥ T 2c holds.
If x /∈ ⋃∞

j=0 T−j [T 2c, T c], then Tnx ∈ [0, c] for all n ≥ 1. Hence the
sequence (Tnx)n≥1 is monotonic, and therefore it converges to a fixed
point of T . This implies htop(T ) = htop(T |[T 2c,Tc]) and every ergodic
T–invariant Borel probability measure µ with hµ(T ) > 0 is concentrated
on [T 2c, T c]. The map h(x) = x−T 2c

c−T 2c conjugates T |[T 2c,Tc] to a unimodal
map T̃ : [0, 1] → [0, 1] (let

{
(0, c̃), (c̃, 1)

}
be the minimal partition for T̃ )

of the first type with T̃ c̃ = 1 and T̃ 2c̃ = 0. Hence in the proofs we may
always assume that T is of the first type and either T 3c < T 2c < c < Tc
or T satisfies Tc = 1 and T 2c = 0.

Our next result describes the Markov diagram of T . It can also be found
in [2]. As our proof is shorter and simpler than the proof of the (more
detailled) result in [2], which is mainly given in [1], we give the proof here.
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Lemma 4. Let T : [0, 1] → [0, 1] be a unimodal map of the first type
with Tc = 1 and T 2c = 0. Define A1 := (c, 1) = (c, T c) and A2 := (0, c) =
(T 2c, c). For n ∈ N, n > 2 let An be the successor of An−1, which satisfies
Tnc ∈ An. Then for every n ∈ N there exists a j ∈ {0, 1, . . . , n− 1}, such
that An is an open interval with the endpoints Tnc and T jc. If j ≥ 1, then
An ⊆ Aj. Moreover, the Markov diagram (D,→) of T satisfies D = {An :
n ∈ N}. If n ∈ N, then An → An+1. Furthermore A1 → A1. Suppose that
n ∈ N, n > 1, assume that An has more than one successor in (D,→),
and let k ∈ N be the smallest number with An → Ak. Then k < n, and
An−k+j has only one successor in (D,→) for all j ∈ {1, 2, . . . , k − 1}.

Proof. A simple induction shows that for every n ∈ N there exists
a j < n, such that An is an open interval with the endpoints Tnc and T jc,
and that An ⊆ Aj , if j ≥ 1. Moreover, simple calculations give A1 → A1,
and An → An+1 for every n ∈ N. Finally, let n ∈ N, n > 1, assume
that An has more than one successor, let k be the smallest number with
An → Ak, and let u < n be the largest number, such that Au has more than
one successor. Then Au+1 is an open interval with the endpoints Tu+1c
and c. By induction we obtain for each j ≤ n − u that Au+j is an open
interval with the endpoints Tu+jc and T j−1c. If u = n − 1, this implies
An → A1. Otherwise we have Au+j ⊆ Aj−1 for j ∈ {2, 3, . . . , n − u}, and
therefore An → An−u.

4. CONTINUITY OF THE MEASURE OF MAXIMAL
ENTROPY

Consider a unimodal map T with positive entropy. In [2] it is proved that
T has a unique measure of maximal entropy. We present a proof for this
fact, which is much simpler than the proof in [1] and [2]. Then we prove
our main result, which states that the measure of maximal entropy is con-
tinuous. The continuity of the topological entropy has been obtained in [4].
However, our proof also shows that the topological entropy is continuous
(without using the results of [4]).

Theorem 5. Let T : [0, 1] → [0, 1] be a unimodal map with htop(T ) > 0.
Then T has a unique measure µ(T ) of maximal entropy.

Proof. By Theorem 11 of [3] and Theorem 2 of [2] it suffices to show
that there exists a unique maximal irreducible C ⊆ D with r(MC) = r(MD),
where (D,→) is the Markov diagram of T .

We may assume that T is of the first type and either T 3c < T 2c < c < Tc
or T satisfies Tc = 1 and T 2c = 0. Since Lemma 3 implies the desired result
in the first case, it remains to consider the case Tc = 1 and T 2c = 0. Let
A1, A2, . . . be as in Lemma 4. As htop(T ) > 0, Theorem 11 of [3] implies



74 PETER RAITH

the existence of a maximal irreducible C ⊆ D with r(MC) > 1. Now let k
be the smallest natural number, such that Ak is contained in a maximal
irreducible C ⊆ D with r(MC) > 1. If C = {Aj : j ≥ k}, then every
maximal irreducible C′ ⊆ D with C′ 6= C satisfies r(MC′) = 1. Otherwise,
Lemma 4 implies that C is finite. Let n be the largest natural number
with An ∈ C. If C′ ⊆ D is maximal irreducible, C′ 6= C and r(MC′) > 1,
then C′ ⊆ D \ {A1, A2, . . . , An}. By Lemma 4, for every C ∈ C′ and every
u ∈ N there are at most 2

u
n+1+1 different paths C0 = C → C1 → · · · → Cu

of length u in C′ with C0 = C. Now (2) and (3) imply r(MC′) ≤ n+1
√

2.
On the other hand C ⊆ {A1, A2, . . . , An}. Hence Lemma 1 gives r(MC) >
n
√

2 > n+1
√

2 ≥ r(MC′).

In order to prove the continuity of the measure of maximal entropy we
prove first that r(MD) > r(MG). This result has been obtained in a slightly
different (and less explicit) form in [4]. For the convenience of the reader
we give a proof.

Lemma 6. Let T : [0, 1] → [0, 1] be a unimodal map with htop(T ) > 0.
Then r(MD) > r(MG), where (D,→) denotes the Markov diagram of T .

Proof. We may assume that T is of the first type and either T 3c <
T 2c < c < Tc or T satisfies Tc = 1 and T 2c = 0. If T 3c < T 2c < c < Tc,
then Lemma 2 and Lemma 3 imply r(MG) = 1 < 2 = r(MD).

It remains to consider the case Tc = 1 and T 2c = 0. Let A1, A2, . . . be as
in Lemma 4. As htop(T ) > 0 we get r(MD) > 1 by (4). If p(c) = ∞, then
Lemma 2 implies r(MG) = 1 < r(MD). Finally, suppose that p(c) = n ∈ N.
By Lemma 4 An is an open interval with the endpoints Tnc = c and T jc
for some j < n. Since An is an open interval we must have j ≥ 1, and
An ⊆ Aj by Lemma 4. This implies An = Aj . Therefore Lemma 4 gives
D = {A1, A2, . . . , An−1}. Now Lemma 1 gives r(MD) > n−1

√
2. Using

Lemma 2 we obtain r(MG) = n
√

2 < n−1
√

2 < r(MD).

Now we prove the main result of this paper on the continuity of the
measure of maximal entropy. If we write (T̃ , Z̃) → (T,Z) we mean (T̃ , Z̃)
converges to (T,Z) in the R0–topology. For Borel probability measures
µ̃ → µ means µ̃ converges to µ in the weak star–topology. The continuity
of the topological entropy has been obtained by MichaÃl Misiurewicz in [4].

Theorem 7. Let T : [0, 1] → [0, 1] be a unimodal map with htop(T ) > 0.
Suppose that Z is the minimal partition for T . Then there exists a δ > 0,
such that every (T̃ , Z̃), which is δ–close to (T,Z) in the R0–topology, has
a unique measure µ(T̃ ) of maximal entropy. Furthermore we have

lim
(T̃ ,Z̃)→(T,Z)

µ(T̃ ) = µ(T ) ,
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lim
(T̃ ,Z̃)→(T,Z)

htop(T̃ ) = htop(T ) and

lim
(T̃ ,Z̃)→(T,Z)

hµ(T̃ )(T̃ ) = hµ(T )(T ) .

Proof. As htop(T ) > 0, T has a unique measure µ(T ) of maximal en-
tropy by Theorem 5. Using (4) and Lemma 6 we obtain that htop(T ) >
log r(MG). By Theorem 1 in [10] there exists a δ > 0, such that every
(T̃ , Z̃), which is δ–close to (T,Z) in the R0–topology, has a unique mea-
sure µ(T̃ ) of maximal entropy. Moreover, Theorem 1 in [10] also shows that
lim(T̃ ,Z̃)→(T,Z) µ(T̃ ) = µ(T ). From Theorem 1 and Theorem 2 in [7] (or
directly from Theorem 2 in [4]) we get lim(T̃ ,Z̃)→(T,Z) htop(T̃ ) = htop(T ).
Finally, the formula lim(T̃ ,Z̃)→(T,Z) hµ(T̃ )(T̃ ) = hµ(T )(T ) follows from the
property hµ(T̃ )(T̃ ) = htop(T̃ ).

The following result follows immediately from Theorem 7 and Theorem 5,
because on the collection of unimodal maps convergence in the maximum
norm implies convergence in the R0–topology.

Corollary 8. Let T : [0, 1] → [0, 1] be a unimodal map with htop(T ) >

0. Then there exists a δ > 0, such that every unimodal map T̃ : [0, 1] →
[0, 1] with ‖T̃−T‖∞ < δ satisfies htop(T̃ ) > 0, and therefore it has a unique
measure µ(T̃ ) of maximal entropy. Moreover we have

lim
‖T̃−T‖∞→0

T̃ is a unimodal map

µ(T̃ ) = µ(T ) .

Remark. Observe that for unimodal maps the topological pressure is
not continuous in general. By Theorem 7 in [11] the topological pressure is
upper semi–continuous for every continuous function f : [0, 1] → R, if and
only if c is not periodic. Moreover, Theorem 7 in [11] implies that there
exist continuous functions f : [0, 1] → R, such that the map T 7→ p(T, f)
on the set of all unimodal maps with positive topological entropy endowed
with the C0–topology is not upper semi–continuous. On the other hand, if
the set of all C1–unimodal maps is endowed with the C1–topology, then the
map T 7→ p(T, f) is upper semi–continuous by Theorem 2 in [9]. However,
the example given in Section 4 of [9] shows, that also in this case we do not
have lower semi–continuity of the topological pressure in general.
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