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If f is a continuous self-map of a compact interval we can represent each
finite fully invariant set of f by a permutation. We can then calculate the
topological entropy of the permutation. This provides us with a numerical
measure of complexity for any map which exhibits a given permutation type. In
this paper we present cyclic and noncyclic permutations which have maximum
topological entropy amongst all cyclic or noncyclic permutations of the same
length.
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1. INTRODUCTION

A finite fully invariant set of a continuous map of a compact interval
to itself induces a permutation in a natural way. If the invariant set is a
periodic orbit the permutation is cyclic. We can calculate the topological
entropy of any permutation θ and it is well known that this gives a lower
bound for the topological entropy of any continuous self-map of the interval
which exhibits a permutation of type θ. The notion of topological entropy
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of a permutation appeared in the literature in the 1980’s but was first
formalized in the paper Combinatorial Patterns for Maps of the Interval
[11]. One of the questions Misiurewicz and Nitecki considered was which
permutations or cycles achieve the maximum topological entropy amongst
all permutations or cycles of the same cardinality. In their paper, Misi-
urewicz and Nitecki defined a family of cyclic permutations for n = 4k+1,
k ∈ N, and used this family to show that as n → ∞ the maximum topo-
logical entropy of the set all n-cycles and of the set of all n-permutations
both approach log(2n/π). This family was later shown to be maximal for
4k + 1-permutations (and hence for 4k + 1-cycles) [3].

Today we have an almost complete classification of maximum entropy
cycles and permutations with only one case still unknown (that case being
to identify those 4k + 2-cycles with maximum entropy). The most recent
advance has been to show that those 4k-cycles with maximum entropy
defined in [9] are in fact the only ones with this property and was the
subject of a paper given by the first author in Katsiveli. In this paper
we give the definitions of all maximum entropy cycles and permutations
identified to date.

2. PRELIMINARIES

In this section we will introduce the language and notation that we will
use throughout the paper. We will state only those results which are es-
sential for our purposes. Other results that we refer to have been stated
fully in previous works as indicated.

For us f will always be a continuous map of a compact interval I into
itself.

Definition 1. The orbit under f of a point x ∈ I is the sequence
Orb(x) = {x, f(x), f2(x), . . . }. If x = fm(x) for some m ∈ N, then Orb(x)
is finite and the orbit is periodic. The orbit has period n if n is the least
positive integer for which x = fn(x).

Recall that a permutation on n letters is a bijective map θ : {1, . . . , n} →
{1, . . . , n}. If θ has the property that for 1 ≤ p ≤ n, θp(1) = 1 if and only
if p = n, then θ is a cycle.

Notation. We define Pn to be the set of all permutations on n letters
and Cn to be the set of all cycles on n letters. We also let P = ∪n≥1Pn
and C = ∪n≥1Cn.

If x has a periodic orbit under f of period n we can write Orb(x) =
{p1, . . . , pn} with p1 < p2 < · · · < pn. This induces a cycle θ ∈ Cn in the
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following way:

θ(i) = j if and only if f(pi) = pj .

In general, if S = {p1, . . . , pn} (with p1 < p2 < · · · < pn) is any finite
fully invariant set for f (that is, f(S) = S), we can define the permutation
θ ∈ Pn by

θ(i) = j if and only if f(pi) = pj .

The permutation θ is called the type of S.

Definition 2. The flip permutation ϕ ∈ Pn is defined as ϕ(i) = n+1−i,
for i ∈ {1, . . . , n}.

So for example, for n = 7 the flip permutation ϕ ∈ P7 is

x1 x2 x3 x4 x5 x6 x7

� � � � � � �
����

���

FIG. 1. The flip permutation ϕ7.

There are permutations θ, θ̃ and θ∗ associated to each permutation θ.
These permutations are formulated in terms of the flip permutation ϕ as
follows:

Definition 3. Let θ ∈ Pn. Then

(1) The reverse of θ is the permutation θ̃ ∈ Pn where θ̃(i) = θ(ϕ(i)).
(2) The converse of θ is the permutation θ∗ ∈ Pn where θ∗(i) = ϕ(θ(i)).
(3) The dual of θ is the permutation θ ∈ Pn where

θ(i) = ϕ(θ(ϕ(i))) = ϕ(θ̃(i)) = θ∗(ϕ(i)).

Corollary 4. Let θ ∈ Pn. Then

(1) The reverse of θ is given by θ̃(i) = θ(n+ 1 − i), for i ∈ {1, . . . , n}.
(2) The converse of θ is given by θ∗(i) = n+ 1− θ(i), for i ∈ {1, . . . , n}.
(3) The dual of θ is given by θ(i) = n+1−θ(n+1−i), for i ∈ {1, . . . , n}.
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Example 5. We illustrate the relationship between θ and θ, θ̃ and
θ∗ with an example. Let f be a map with a period 5 orbit such that
f(x1) = x2, f(x2) = x4, f(x4) = x5, f(x5) = x3 and f(x3) = x1 (with
x1 < x2 < x3 < x4 < x5). The orbit is illustrated by the following diagram:

x1 x2 x3 x4 x5

� � � � �
� � �

��

FIG. 2. The 5-cycle θ.

and is represented by the permutation θ ∈ P5 with θ(1) = 2, θ(2) =
4, θ(4) = 5, θ(5) = 3 and θ(3) = 1. The permutation θ ∈ P5 represents
the period 5 orbit above with the orientation reversed as illustrated in Fig.
3 below.

x1 x2 x3 x4 x5

� � � � �
� �

���

FIG. 3. The 5-cycle θ.

Clearly θ is a cycle precisely when θ is a cycle. The permutation θ̃
is obtained from the permutation θ by first reversing the order on the
elements of Orb(x); that is, if θ(1) = 2, θ(5) = 3, . . . , we now consider
θ̃(5) = 2, θ̃(1) = 3 and so on.

x1 x2 x3 x4 x5

� � � � �
� ��

��

FIG. 4. The 5-permutation θ̃.

If θ is a cycle it is not necessarily true that θ̃ is a cycle. The permutation
θ∗ ∈ P5 represents the orbit above with the orientation reversed.
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x1 x2 x3 x4 x5

� � � � �
� ��

��

FIG. 5. The 5-permutation θ∗.

Of course θ∗ is a cycle precisely when θ̃ is a cycle.

The idea of reversing the orientation of a permutation and of reversing
the order on the points of a permutation can be represented by a compo-
sition of permutations.

For each permutation θ ∈ Pn we can define a unique map fθ as follows:

Definition 6. If S is a fully invariant set for f of type θ ∈ Pn then the
map fθ : [1, n] → [1, n] satisfying

(i) fθ(i) = θ(i), for i ∈ {1, . . . , n},
(ii) fθ is affine on each interval Ii = {x ∈ R : i ≤ x ≤ i + 1}, for

i ∈ {1, . . . , n− 1},
is called the linearisation of f with respect to its invariant set of type θ.

Definition 7. If, for each i ∈ {1, . . . , n}, fθ(i) is a local extremum of
fθ then fθ is said to be maximodal. The permutation θ ∈ Pn is also said
to be maximodal.

Definition 8. The entropy of a permutation θ ∈ P is

h(θ) = inf
f

{h(f)}

where f is any continuous self-map of I which has an invariant set of type
θ and h(f) is the topological entropy of f .

It has been shown (see [2]) that the map fθ has the lowest topological
entropy of any map which has an orbit of type θ, hence

Proposition 9. If θ ∈ P then h(θ) = h(fθ).

We note that for each θ ∈ P , h(θ) = h(θ).

Definition 10. The induced matrixM(θ) of θ ∈ Pn is the (n−1)×(n−1)
matrix with i jth entry given by
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ai j =

{
1, if fθ(Ii) ⊃ Ij ,

0, otherwise,

where Ii = {x ∈ R : i ≤ x ≤ i+ 1} and i, j ∈ [1, n− 1].

The next proposition (due to [12], see [1] for a proof) allows us to calcu-
late the entropy of a permutation directly from its induced matrix.

Proposition 11. If θ ∈ P then h(θ) = log ρ(M(θ)), where ρ(M(θ)) is
the spectral radius of the induced matrix of θ.

So the combination of Propositions 9 and 11 describe a procedure for
calculating the entropy of a permutation θ. We first construct the function
fθ, derive the matrix M(θ) and then calculate log ρ(M(θ)) = h(θ).

notation. For n ∈ N let

H(Cn) = max {h(θ) : θ ∈ Cn}

and

H(Pn) = max {h(θ) : θ ∈ Pn}.

3. PERMUTATIONS

As noted in the introduction, for n = 4k+1 the family of n-permutations
defined by Misiurewicz and Nitecki does indeed attain maximum entropy
amongst all n-permutations. In fact it turns out that if we generalize this
family to the remaining odd periods, we have a family of n-permutations
which is entropy maximal for any n odd [3]. Furthermore, it has been
shown that this family is unique up to duality [4]. A striking feature of
the family is that the permutations are cyclic so that H(Cn) = H(Pn) for n
odd. If we extend this generalization to the case where n is even we again
obtain a family of permutations which achieve maximum entropy. It has
been shown that this family is unique and that each permutation in the
family is self-dual (ϑn = ϑn) but is not cyclic [7, 8, 5]. So H(Cn) < H(Pn)
for n even. We describe these families in greater detail in Sections 3.1 and
3.2.

3.1. Maximum entropy n-permutations, n odd
In the early 1990’s Geller and Tolosa [3] generalized the family of cycles

defined by Misiurewicz and Nitecki [11] to the remaining odd periods
obtaining the following definition:
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Definition 12. Let n ∈ N be odd and let l = �n−1
4 �. The cyclic

permutation θn is defined by

θn : j →


n− 2l − j, if j ∈ O[1, n− 2l − 2]
j − n+ 2l + 1, if j ∈ O[n− 2l, n]
n− 2l + j − 1, if j ∈ E[2, 2l]
n+ 2l − j + 2, if j ∈ E[2l + 2, n− 1].

It is easy to verify that this defines a family of cyclic permutations. We
note the following general features of fθn

.

1. The map fθn
has a local minimum at j = 1 (and therefore also at

j = n since n is odd).
2. The map fθn

is maximodal and has all minimum values below all
maximum values.

3. For k = n+1
2 the map fθn

has a global minimum at j = k + 1 if k is
even and j = k if k is odd.

4. For k = n+1
2 the map fθn

has a global maximum at j = k if k is even
and j = k + 1 if k is odd.

If n = 4l + 1 the cycle θn is of the form

(1 2l 4l 2l + 3 3 2l − 2 4l − 2 2l + 5 . . . . . . . . .

. . . . . . . . . 2i+ 1 2l − 2i 4l − 2i 2l + 2i+ 3︸ ︷︷ ︸
0≤i≤l−1

. . . . . . . . .

. . . . . . . . . 2l − 1 2 2l + 2 4l + 1 2l + 1)

and is illustrated below for the case n = 9.

x1 x2 x3 x4 x5 x6 x7 x8 x9

� � � � � � � � �
� �� �

� �� � �

FIG. 6. The maximum entropy 9-permutation θ9.

The general shape of the graph of fθn
together with the induced matrix

M(θn) is illustrated for the cases n = 9 (Fig. 7) and n = 7 (Fig. 9).
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1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 9



0 0 0 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 0 0
0 0 0 0 1 1 0 0



FIG. 7. The graph of fθ9 and M(θ9).

If n = 4l + 3 the cycle θn is of the form

(1 2l + 2 n 2l + 1 2 2l + 4 n− 2 2l − 1 4 . . . . . . . . .
. . . . . . . . . 2l + 2i n− 2i+ 2 2l − 2i+ 3 2i︸ ︷︷ ︸

1≤i≤l
. . . . . . . . .

. . . . . . . . . n− 3 2l + 5 3 2l n− 1 n− 2l)

and is illustrated below for the case n = 7.

x1 x2 x3 x4 x5 x6 x7

� � � � � � �
� ��

� �� �

FIG. 8. The maximum entropy 7-permutation θ7.
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1

2

3

4

5

6

7

2 3 4 5 6 7


0 0 0 1 1 0
0 1 1 1 1 0
0 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 0 0
0 0 1 1 0 0



FIG. 9. The graph of fθ7 and M(θ7).

Of course, since for any permutation θ, h(θ) = h(θ), the family of dual
cycles also has maximum entropy. In this case fθn

has a local maximum
at j = 1 (and hence also at j = n).

It was shown in [11] that the induced matrix of an entropy maximal per-
mutation has a characteristic shape which closely resembles a “diamond”
pattern. Clearly a matrix which has a perfect diamond shape (that is, ♦n−1

is the 0 − 1 matrix such that for n odd and k = (n − 1)/2, di j = 1 if and
only if j ∈ [k+1− i, k+ i] for i ≤ k, j ∈ [i− k, 3k− i+1] for i > k) cannot
be the induced matrix of any permutation. In the case where n is odd,
the variation between the perfect diamond matrix and the matrix M(θn)
is minimal. Indeed for n = 4l+1, ai j = 1 if and only if j ∈ [k− i, k+ i−1]
for even i < k, j ∈ [i − k + 1, 3k − i + 2] for even i > k and j ∈ [1, n − 2]
for i = k, otherwise ai j = di j , whilst for n = 4l + 3, ai j = 1 if and only if
j ∈ [k − i+ 2, k + i+ 1] for odd i < k, j ∈ [i− k − 1, 3k − i] for odd i > k
and j ∈ [2, n− 1] for i = k, otherwise ai j = di j . The entries ai j 	= di j are
marked in bold type in Fig. 7 and Fig. 9.

The idea of the Geller and Tolosa proof hinges on the fact that the
entropy of any permutation θ can be defined in terms of the spectral radius
of its induced matrix M(θ). So the inequality ρ(M(θ)) ≤ ρ(M(θn)) is
established for appropriate permutations θ ∈ Pn.

3.2. Maximum entropy n-permutations, n even
We now turn our attention to the case where n is even. A straightforward

generalization of the Misiurewicz-Nitecki orbit types to n even yields a
family of n-permutations which has maximum topological entropy. The
main difference in this case is that these permutations are not cyclic so
that they are maximal in Pn but not in Cn. These results were obtained
independently by King ( [7], [8]), and Geller and Zhang [5].
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Definition 13. Let n be even and k = n/2. The family of noncyclic
n-permutations ϑn is defined by:

ϑn : j →


k − j + 1, if j ∈ O[1, k]
j − k, if j ∈ O[k + 1, n− 1]
k + j, if j ∈ E[2, k]
3k − j + 1, if j ∈ E[k + 1, n].

1. The map fϑn
has a local minimum at j = 1 (and therefore a local

maximum at j = n since n is even).
2. The map fϑn

is maximodal and has all minimum values below all
maximum values.

3. The map fϑn
has a global minimum at j = k if k is odd and j = k+1

if k is even.
4. The map fϑn

has a global maximum at j = k+1 if k is odd and j = k
if k is even.

If n = 4p + 2 and p is odd then ϑn is a product of disjoint 2-cycles of the
form

(1 k)(3 k − 2) . . . . . .
(
k − 1

2
k + 3

2

)
(2 k + 2)(4 k + 4) . . . . . . (k − 1 n− 1)

(k + 1 n)(k + 3 n− 2) . . . . . .
(

3k − 1
2

3k + 3
2

)
.

x1 x2 x3 x4 x5 x6

� � � � � �
� ��

� ��

FIG. 10. The maximum entropy 6-permutation ϑ6.

Again we give examples of the graphs of fϑn
and the induced matrices

M(ϑn) in the cases n = 6 (Fig. 11), n = 10 (Fig. 13) and n = 8 (Fig 15).
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1

2

3

4

5

6

2 3 4 5 6


0 0 1 1 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 1 1 0 0



FIG. 11. The graph of fϑ6 and M(ϑ6).

If n = 4p+ 2 and p is even then ϑn is a product of disjoint cycles of the
form

(1 k)(3 k − 2) . . . . . .
(
k − 3

2
k + 5

2

) (
k + 1

2
k + 1

2

)
(2 k + 2)(4 k + 4) . . . . . . (k − 1 n− 1)

(k + 1 n)(k + 3 n− 2) . . . . . .
(

3k − 3
2

3k + 5
2

)(
3k + 1

2
3k + 1

2

)

where each factor in the product is a 2-cycle except for the factors(
k+1
2

k+1
2

)
and

(
3k+1

2
3k+1

2

)
which are both fixed points. An example is

illustrated below for the case n = 10.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

� � � � � � � � � �
� �� �� �

� �� �

FIG. 12. The maximum entropy 10-permutation ϑ10.
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1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10



0 0 0 0 1 1 0 0 0
0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 0 0
0 0 0 1 1 0 0 0 0



FIG. 13. The graph of fϑ10 and M(ϑ10).

If n = 4p then ϑn is a product of disjoint 4-cycles of the form

(1 k n k + 1)(3 k − 2 n− 2 k + 3) . . . . . . (k − 1 2 k + 2 n− 1).

The diagram below is for n = 8.

x1 x2 x3 x4 x5 x6 x7 x8

� � � � � � � �
� �� �

� �� �

FIG. 14. The maximum entropy 8-permutation ϑ8.
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1

2

3

4

5

6

7

8

2 3 4 5 6 7 8



0 0 0 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 0
0 0 1 1 1 1 0
0 0 1 1 0 0 0



FIG. 15. The graph of fϑ8 and M(ϑ8).

The induced matrix of a permutation of even length will have odd dimen-
sion, hence the appropriate diamond matrix is ♦n−1 such that di j = 1 if
and only if j ∈ [k+1−i, k−1+i] for i ≤ k, j ∈ [i−k+1, 3k−1−i] for i > k.
Again, the matrix ♦n−1 cannot represent any permutation but the matrix
M(ϑn) is very close to it since ai j = 1 if and only if j ∈ [k+1− i, k+ i] for
j odd, j < k, j ∈ [k − i, k − 1 + i] for j even, j < k, j ∈ [i− k + 1, 3k − i]
for j even, j > k, j ∈ [i− k, 3k − i− 1] for j odd, j > k and j ∈ [1, n− 1]
for j = k. Again we indicate those entries ai j 	= di j in bold type.

A family of n-permutations associated to the family {ϑn}n≥2, n even is
the family of reverse permutations defined below.

Definition 14. Let n be even and k = n/2. The family of noncyclic
n-permutations ϑ̃n is defined by:

ϑ̃n : j →


k + j, if j ∈ O[1, k]
3k − j + 1, if j ∈ O[k + 1, n− 1]
k − j + 1, if j ∈ E[2, k]
j − k, if j ∈ E[k + 1, n].

In terms of the graph of fϑn
, the graph of f

ϑ̃n
is reflected through the line

j = n+1
2 . This family is also a family of self-dual permutations and for all

n even, h(ϑn) = h(ϑ̃n) (see [8]). If a permutation φ is cyclic (respectively
noncyclic) it is not true that φ̃ is necessarily cyclic (respectively noncyclic).
In this case the family {ϑ̃n}n≥2 is also noncyclic. Thus we have two distinct
n-permutations for each n even which attain maximum entropy in Pn.
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1. The map f
ϑ̃n

has a local maximum at j = 1 (and therefore a local
minimum at j = n since n is even).

2. The map f
ϑ̃n

is maximodal and has all minimum values below all
maximum values.

3. The map f
ϑ̃n

has a global minimum at j = k+1 if k is odd and j = k
if k is even.

4. The map f
ϑ̃n

has a global maximum at j = k if k is odd and j = k+1
if k is even.

If n = 4p + 2 and p is odd then ϑ̃n is a product of disjoint 2-cycles of the
form

(1 k + 1)(3 k + 3) . . . (k 2k)

(2 k − 1)(4 k − 3) . . .
(
k − 3

2
k + 5

2

)(
k + 1

2
k + 1

2

)
(k + 2 n− 1)(k + 4 n− 3) . . .

(
3k − 3

2
3k + 5

2

) (
3k + 1

2
3k + 1

2

)

which is shown below for n = 6.

x1 x2 x3 x4 x5 x6

� � � � � �
�� � �

� �

FIG. 16. The maximum entropy 6-permutation ϑ̃6.

If n = 4p+ 2 and p is even then ϑ̃n is a product of disjoint cycles of the
form

(1 k + 1)(3 k + 3) . . . . . . (k 2k)

(2 k − 1)(4 k − 3) . . . . . .
(
k − 1

2
k + 3

2

)
(k + 2 n− 1)(k + 4 n− 3) . . . . . .

(
3k − 1

2
3k + 3

2

)
.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

� � � � � � � � � �
� �� ��

� �� ��

FIG. 17. The maximum entropy 10-permutation ϑ̃10.

If n = 4p and k = 2p then ϑn is a product of disjoint 4-cycles of the form

(1 k + 1 n k)(3 k + 3 n− 2 k − 2) . . . . . . (k − 1 n− 1 k + 2 2).

The example illustrated is for n = 8.

x1 x2 x3 x4 x5 x6 x7 x8

� � � � � � � �
� �� �

� �� �

FIG. 18. The maximum entropy 8-permutation ϑ̃8.

We leave it to the reader to construct examples of relevant graphs and
matrices as desired.

To prove that these permutations are entropy maximal for n even an
argument analogous to that used to prove the result for n odd suffices.

We can represent the maximum entropy n-permutations for any n ∈ N

in a unified way.

Definition 15. Let n ∈ N, k = n/2 and let a be the fractional part of
n/2. We define the n-permutation Θn as follows:

Θn : j →


k − j + 1 + (−1)((n+1)/2)a, if j ∈ O[1, k]
j − k + (−1)((n−1)/2)a, if j ∈ O[k + 1

2 , n]
k + j + (−1)((n+1)/2)a, if j ∈ E[2, k]
3k − j + 1 + (−1)((n−1)/2)a, if j ∈ E[k + 1

2 , n].
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4. CYCLES

Having identified all maximum elements of Pn it is a natural question
to consider the maximum elements of Cn. As we have already noted, the
maximum entropy permutations are cyclic for n odd so both questions are
answered simultaneously. Furthermore, for n = 4 the maximum entropy
permutation is cyclic. So we now consider only the case where n > 4 is
even.

Definition 16. Let n = 4k for k ∈ N \ {1}. We define the cyclic
n-permutation ψn as follows:

ψn : j →



2k − j + 1, if j ∈ O[1, k + 1]
2k − j + 2, if j ∈ O[k + 2, 2k + 1]
j − 2k − 1, if j ∈ O[2k + 3, 3k]
j − 2k, if j ∈ O[3k + 1, n− 1]
2k + j, if j ∈ E[2, k + 1]
2k + j − 1, if j ∈ E[k + 2, 2k]
6k − j + 2, if j ∈ E[2k + 2, 3k]
6k − j + 1, if j ∈ E[3k + 1, n].

1. The map fψn
has a local minimum at j = 1 (and hence a local maxi-

mum at j = n since n is even).
2. The map fψn

is maximodal and has all maximum values above all
minimum values.

3. The map fψn
has a global minimum at j = 2k + 1.

4. The map fψn
has a global maximum at j = 2k + 2.

For example, for k odd, ψn is easily seen to be the cycle

(2k + 1 1 2k n− 1 . . .

2≤i≤ k−3
2︷ ︸︸ ︷

2k − 2i+ 3 2i− 1 2k − 2i+ 2 n− 2i+ 1 . . .

. . . k + 4 k − 2 k + 3 3k + 2 k + 2 k k + 1 3k + 1 3k k − 1

3k − 1 3k + 3 . . .

k−3
2 ≥i≥2︷ ︸︸ ︷

2k + 2i+ 1 2i 2k + 2i n− 2i+ 2 . . .

. . . 2k + 3 2 2k + 2 n).
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FIG. 19. The maximum entropy 12-cycle ψ12.
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FIG. 20. The graph of fψ12 and M(ψ12).

Similarly, for k even, ψn is the cycle

(2k + 1 1 2k n− 1 . . .

2≤i≤ k−2
2︷ ︸︸ ︷

2k − 2i+ 3 2i− 1 2k − 2i+ 2 n− 2i+ 1 . . .

. . . k + 3 k − 1 k + 2 3k + 1 k + 1 k 3k 3k + 2 3k − 1 k − 2

3k − 2 3k + 4 . . .

k−4
2 ≥i≥2︷ ︸︸ ︷

2k + 2i+ 1 2i 2k + 2i n− 2i+ 2 . . .

. . . 2k + 3 2 2k + 2 n).
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FIG. 21. The maximum entropy 8-cycle ψ8.
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FIG. 22. The graph of fψ8 and M(ψ8).

If we compare the induced matrix of a maximum entropy n-cycle (n
even) to the diamond matrix ♦n−1 (that is, di j = 1 if and only if j ∈
[2k+1− i, 2k−1+ i], i ≤ 2k, j ∈ [i−2k+1, 6k− i− i], i > 2k) there is still
little variation (although more than the variation between the maximum
entropy n-permutation and ♦n−1, as we would expect). Specifically for
ai j ∈ M(ϑn) we have ai j = 1 if and only if j ∈ [2k + 1 − i, 2k + i], i odd,
i < k+1, j ∈ [2k− i, 2k−1+ i], i even, i < k+1, j ∈ [2k+2− i, 2k+ i−1],
i odd, k + 1 < i ≤ 2k, j ∈ [2k + 1 − i, 2k + i − 2], i even, k + 1 < i ≤ 2k,
j ∈ [i−2k−1, 6k− i], i odd, 2k+1 < i < 3k, j ∈ [i−2k, 6k− i+1], i even,
2k+1 < i < 3k, j ∈ [i−2k, 6k− i−1], i odd, i > 3k, j ∈ [i−2k+1, 6k− i],
i even, i > 3k, j ∈ [i− 2k, 6k − 1], i = 2k + 1, j ∈ [i− 2k − 1, 6k − i− 1],
i = 3k, i odd, j ∈ [i−2k+1, 6k− i+1], i = 3k, i even, ai j = di j otherwise.
For example, in Fig. 20 and Fig. 22 the entries of the matrix M(ψ8) which
are in bold are precisely those ai j 	= di j .
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The cycle ψn is not self-dual however the dual ψn is automatically a cycle
and has the same entropy as ψn. In the case of ψn the reverse permutation
ψ̃n is also a cycle and hence so is ψ∗

n.

Definition 17. Let n = 4k for k ∈ N \ {1}. We define the cyclic
n-permutation ψ̃n as follows:

ψ̃n : j →



2k + j, if j ∈ O[1, k]
2k + j + 1, if j ∈ O[k + 1, 2k − 1]
6k − j, if j ∈ O[2k + 1, 3k − 1]
6k − j + 1, if j ∈ O[3k, n− 1]
2k − j + 1, if j ∈ E[2, k]
2k − j, if j ∈ E[k + 1, 2k − 2]
j − 2k + 1, if j ∈ E[2k, 3k − 1]
j − 2k, if j ∈ E[3k, n].

1. The map fψn
has a local maximum at j = 1 (and hence a local mini-

mum at j = n since n is even).

2. The map fψn
is maximodal and has all maximum values above all

minimum values.

3. The map fψn
has a global minimum at j = 2k.

4. The map fψn
has a global maximum at j = 2k − 1.

Specifically, ψ̃n is the cycle

(2k 1 2k + 1 n− 1 . . .

2≤i≤ k−3
2︷ ︸︸ ︷

2k + 2i− 2 2i− 1 2k + 2i− 1 n− 2i+ 1 . . .

. . . 3k − 3 k − 2 3k − 2 3k + 2 3k − 1 k 3k 3k + 1 k + 1 k − 1

k + 2 3k + 3 . . .

k−3
2 ≥i≥2︷ ︸︸ ︷

2k − 2i 2i 2k − 2i+ 1 n− 2i+ 2 . . .

. . . 2k − 2 2 2k − 1 n)
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FIG. 23. The maximum entropy 12-permutation ψ̃12.

for k odd, and for k even, ψ̃n is the cycle

(2k 1 2k + 1 n− 1 . . .

2≤i≤ k−2
2︷ ︸︸ ︷

2k + 2i− 2 2i− 1 2k + 2i− 1 n− 2i+ 1 . . .

. . . 3k − 2 k − 1 3k − 1 3k + 1 3k k k + 1 3k + 2 k + 2 k − 2

k + 3 3k + 4 . . .

k−4
2 ≥i≥2︷ ︸︸ ︷

2k − 2i 2i 2k − 2i+ 1 n− 2i+ 2 . . .

. . . 2k − 2 2 2k − 1 n).

x1 x2 x3 x4 x5 x6 x7 x8
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FIG. 24. The maximum entropy cycle ψ̃8.

Theorem 18. [9, 10] For n = 4k, k ∈ N, k > 1, the cyclic permuta-
tions ψn, ψ̃n, ψn and ψ∗

n are the only cycles which have maximum entropy
amongst all cycles of period n.

To prove that these cycles have maximum entropy we need to consider
the relationship between a permutation and its induced matrix. The key
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is to identify characteristics of the matrices which allow us to recognize
those which represent permutations which have particular types of proper
invariant subsets (which are modelled on the invariant subsets of ϑn). Any
permutations with such subsets are clearly not cyclic, hence they need not
be considered. It has been shown ( [9, 10]) that ρ(M(ψn)) is maximal for
a class of matrices which excludes these examples.

The authors are currently working with a family of 4k + 2-cycles which
they believe to be entropy maximal.
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