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We consider Morse-Smale diffeomorphisms of three-manifolds for which the
sphere S3 is the universal covering. We prove that if the nonwandering set of a
diffeomorphism f on such a manifold consists of exactly four fixed points, two
of them being saddles, then the wandering set of f has at least one nonclosed
heteroclinic curve.
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1. INTRODUCTION

Let us recall that a diffeomorphism f of a smooth closed manifold M
is Morse-Smale if the following holds: 1) its nonwandering set Ω(f) is
finite and consists of hyperbolic periodic points, 2) the stable and unstable
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manifolds of saddle periodic points have only transversal intersection (see
the survey [3] which contains many results and references on Morse-Smale
diffeomorphisms).

Let p, q ∈ Ω(f) be saddle periodic points for which Wu(p) ∩W s(q) 6= ∅,
then following S. Smale’s terminology we write p ≤ q. We call a diffeo-
morphism f a gradient-like diffeomorphism, if the condition p ≤ q implies
dim W s(p) < dim W s(q). If Wu(p) ∩ W s(q) 6= ∅ and dim W s(p) =
dim W s(q), then from the transversality of the intersection of Wu(p) with
W s(q) it follows that Wu(p)∩W s(q) is a countable set. Each point of this
set is called a heteroclinic point of the diffeomorphism f .

From transversality of the intersection Wu(p) with W s(q) it follows that
dim W s(p) ≤ dim W s(q), hence any Morse-Smale diffeomorphism which
does not contain heteroclinic points is a gradient-like diffeomorphism. If
Wu(p)∩W s(q) 6= ∅ and dim W s(p) < dim W s(q), then a connected compo-
nent of the intersection Wu(p)∩W s(q) is called a heteroclinic submanifold.
If M is three-dimensional, then any heteroclinic submanifold is either a
simple closed curve or a nonclosed curve without self-intersections. We call
such curves heteroclinic curves.

One of the differences between diffeomorphisms and flows on three-di-
mensional manifolds is the possibility of nontrivial embedding for separa-
trices of saddle periodic points of a diffeomorphism in an ambient manifold.
The first example of such a nontrivial embedding was constructed by Pixton
[6]. Bonatti and Grines [2] considered a class of Morse-Smale diffeomor-
phisms on the sphere S3 for which the nonwandering set consists of one
saddle fixed point, two sinks and one source. The surprising fact here is
that the classification (up to topological conjugacy) of this almost trivial
dynamics is equivalent to the classification of knots in S2×S1 that are free-
homotopy to the knot {x}×S1. Let us stress that due to [5], Morse-Smale
flows with the similat nonwandering set on S3 are topologically equivalent.

In [4], necessary and sufficient conditions were obtained for topological
conjugacy of diffeomorphisms from the class of Morse-Smale diffeomor-
phisms on 3-manifolds which do not admit heteroclinic intersections (i.e.,
there are neither heteroclinic points, nor heteroclinic curves). In [1], it was
proved that if M is a closed connected orientable three-dimensional mani-
fold, then the following holds: for the existence of Morse-Smale diffeomor-
phism without heteroclinic curves on M with k saddle periodic points and
l sinks and sources (in total) it is necessary and sufficient that if k = l− 2,
then M is the 3-sphere and if k 6= l − 2 then M is the connected sum of
(k − l + 2)/2 copies of S2 × S1.

In the present paper we consider the class MS(M3, 4) of Morse-Smale
diffeomorphisms whose nonwandering set consists of exactly four points two
of which are saddles. In lemma 1 we show by using [1] that if a diffeomor-
phism f belongs to MS(M3, 4), then the Morse index of the two saddles are
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different i.e., their unstable manifolds have different dimensions. Thus the
wandering set of such a diffeomorphism does not contain heteroclinic points.
It follows immediately from [1] that if the wandering set of f ∈ MS(M3, 4)
does not contain heteroclinic curves, then M3 is S2 × S1. Notice that one
can easily construct an example of Morse-Smale diffeomorphism from the
class MS(S2×S1, 4) whose nonwandering set does not contain heteroclinic
curves. Then it follows from [1] that if M3 is different from S2 × S1, then
the wandering set of any diffeomorphism f ∈ MS(M3, 4) has heteroclinic
curves. However it was still an open question whether such a curve is closed
or nonclosed.

In this paper we prove that if the universal covering of the manifolds M3

is the sphere S3 then the wandering set of a diffeomorphism f ∈ MS(M3, 4)
has at least one nonclosed heteroclinic curve (see theorem 4). Notice that
there is a diffeomorphism f ∈ MS(M3, 4) whose wandering set does not
contain closed heteroclinic curves.

2. PROOF OF THE THEOREM 4

Lemma 1. Let f ∈ MS(M3, 4) has saddle fixed σ1, σ2. Then their
Morse indeces are u(σ1) = 1, u(σ2) = 2 (or vice versa).

Proof. It is enough to show that the saddles σ1, σ2 have different
Morse indeces. Let us suppose by contradiction that the wandering set
of the diffeomorphism f has no heteroclinic curves. As we have already
mentioned in the Introduction, in this case the manifold M3 is S2 × S1

(this follows from [1]). Let us apply now the Lefschetz formula

L(f) =
∑

p∈Fix f

ind (p, f),

where L(f) is the Lefschetz number, which is calculated by the formula

L(f) =
n∑

i=0

(−1)iSp fi∗,

and Sp fi∗ is the trace of the linear map Fi∗ : Hi(M3, lR) → Hi(M3, lR) of
the homology group Hi(M3, lR) induced by f . Since M3 = S2 × S1 and f
is orientation preserving, we have L(f) = 0, as H1(M3, lR) = H2(M3, lR) =
ZZ and Spf1∗ = Spf2∗ = 1. On the other hand, the coincidence of Morse
indeces of the saddles imply that the sum of indeces of fixed points cannot
be zero. This contradiction proves the lemma.
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Lemma 2. If f ∈ MS(M3, 4) then the following inclusions take place:

Wu(σ1)− σ1 ⊂ W s(ω), W s(σ2)− σ2 ⊂ Wu(α).

Proof. . As f cannot have homoclinic points, W s(σi) ∩ Wu(σi) = ∅
(i = 1, 2). Since f is a structurally stable diffeomorphism, it follows
from transversality of stable and unstable manifolds of saddle points that
Wu(σ1)∩W s(σ2) = ∅. As M3 is the union of the stable (unstable) manifold
of fixed points we get the result of the lemma.

Lemma 3. Let f ∈ MS(M3, 4). Then the sets

Cω
def= {ω} ∪Wu(σ1) and Cα

def= {α} ∪W s(σ2)

are embeddings of the circle S1.

Proof. . We need to prove that each of the sets Cω and Cα is an embed-
ding of the circle S1 in M3. We will prove this result only for Cω because
for Cα the proof is similar.

There is a C1-immersion ϕ : lR → Wu(σ1), where ϕ(0) = σ1. Let us
show that the immersion ϕ can be extended to a homeomorphism

ϕ : S1 ∼= lR ∪ {∞} → Wu(σ1) ∪ {σ1},

and we put ϕ(±∞) = ω. By lemma 2, Wu(σ1) − σ1 ⊂ W sω). Therefore
the ω-limit set of each component of the set Wu(σ1) − σ1 consists of the
single point ω. This imply the result of the lemma.

Theorem 4. Let f ∈ MS(M3, 4) where M3 is a closed orientable three-
dimensional manifold for which the sphere S3 is the universal covering.
Then the wandering set of the diffeomorphism f contains at least one non-
closed heteroclinic curve.

Proof. Let us consider a fundamental domain F s of the restriction
f |W s(σ1)−σ1 . As the point σ1 is hyperbolic, we may assume that F s is
a closed annulus bounded by smooth closed curves C1 and C2 and these
curve bound (in W s(σ1)) open disks containing the point σ1. Let us take a
simple closed curve C in F s which is homotopic to the curves C1 and C2.

We shall divide the further proof into steps. The end of the proof of each
step we shall denote by ¦.

Step 0 Let C be any closed curve which is homotopic to the curves C1

and C2, then C ∩Wu(σ2) 6= ∅.
Proof of step 0. Suppose the contrary, that is C∩Wu(σ2) = ∅. As M3−ω

is the union of exactly three disjoint unstable manifolds Wu(α) , Wu(σ2)
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and Wu(σ1), we have C ⊂ Wu(α). By compactness of Cω = {ω}∪Wu(σ1),
there is a neighbourhood U(α) of the source α such that U(α) ∩ Cω = ∅.
The inclusion C ⊂ Wu(α) and compactness of C imply the existence of a
negative number n0 such that fn0(C) ⊂ U(α).

Let us consider the universal covering q : S3 → M3 and the covering
diffeomorphism f̃ : S3 → S3. Let C̃ω be a connected component of the
set q−1(Cω). Since q : S3 → M3 is finite-sheeted, C̃ω is a simple closed
curve containing at least one saddle σ̃1 ∈ q−1(σ1). It follows from the
equality u(σ1) = 1 that W s(σ1) is homeomorphic to lR2. As the curve
C ⊂ W s(σ1) − σ1 is nonhomotopic to zero in W s(σ1) − σ1, it bounds (in
W s(σ1)) a disk D which contains the point σ1. As f has no homoclinic
points, the intersection D ∩Cω consists of exactly one point σ1. Therefore
there is a simple closed curve C̃ ∈ q−1(C) which bounds a disk belonging
to W s(σ̃1) and intersecting the family of closed curves of the set q−1(Cω)
in exactly one point σ̃1.

Therefore C̃ and q−1(Cω) forms a nontrivial link with the linking coeffi-
cient −1 or +1 (depending on the orientation of the curves). Then f̃n0(C̃)
and f̃n0(q−1(Cω)) also forms nontrivial link with the linking coefficient −1
or +1. From the equality f(Cω) = Cω it follows f̃n0(q−1(Cω)) = q−1(Cω).
Therefore f̃n0(C̃) and q−1(Cω) forms a nontrivial link.

On the other hand, f̃n0(C̃) ∈ q−1(U(α)). Without loss of generality we
may assume that the set q−1(U(α)) is the union of disjoint connected com-
ponents which are homeomorphic to U(α) and each of these components
is homeomorphic to the three-dimensional disk. Therefore f̃n0(C̃) belongs
entirely to one of these connected components, which we denote U−1(α).
As U(α) ∩ Cω = ∅ then U−1(α) ∩ q−1(Cω) = ∅. Therefore the linking
coefficient of f̃n0(C̃) and q−1(Cω) is equal to zero. We get a contradiction.
¦

Step 1 For a compact (in the topology of the manifold W s(σ1)) subset
F ⊂ W s(σ1) and any point m0 ∈ int F there is a neighbourhood U(m0)
which is homeomorphic to a disk and which has intersection with no more
than one curve from the intersection F ∩ Wu(σ2). Moreover if U(m0)
intersects only one curve (denoted by l) then the intersection U(m0) ∩ l
consists of one component which is homeomorphic to a simple arc and
divides U(m0).

Proof of step 1. Suppose the contrary, i.e., for any neighbourhood U(m0)
which is homeomorphic to a disk, the intersection U(m0) ∩ (F ∩Wu(σ2))
consists of more than one curve. Then there is a sequence mk ∈ F∩Wu(σ2)
which converges to a point m0 ∈ int F such that the points mk lie in disjoint
components of the intersection F ∩Wu(σ2). From this and transversality
of the intersection F ∩Wu(σ2) it follows that the points mk are isolated
in the topology of the unstable manifold Wu(σ2). Therefore m0 /∈ Wu(σ2)
(otherwise the unstable manifold Wu(σ2) would be self-limiting and there
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would be homoclinic points). As M3 − ω = Wu(σ2) ∪ Wu(α) ∪ Wu(σ1)
then either m0 ∈ Wu(α) or m0 ∈ Wu(σ1). The inclusion m0 ∈ Wu(α)
is impossible because the unstable manifold Wu(α) is open and cannot
contain accumulation points belonging to the unstable manifold Wu(σ2).
The inclusion m0 ∈ Wu(σ1) is also impossible because otherwise it would
imply the existence of homoclinic points.

Thus there is a neighborhood U(m0) such that U(m0) ∩ (F ∩Wu(σ2))
consists of one simple curve, which we denote by l. Let us show that l
divides U(m0). Suppose the contrary. From the arguments above and
transversality of the intersection F with Wu(σ2) it follows that the in-
tersection of boundary points of l with the neighborhood U(m0) con-
sists of exactly one point, which we denote by l∗. From the equality
M3 − ω = Wu(σ2) ∪ Wu(α) ∪ Wu(σ1) it follows that the point l∗ must
belong to Wu(α) ∪Wu(σ1). But it is impossible. The contradiction com-
pletes the proof of the step. ¦

As by step 0, Wu(σ2) intersects an arbitrary curve C which is homotopic
to the boundary components C1 and C2 of the annulus F s, F s ∩Wu(σ2)
contains at least one arc d, with endpoints a1, a2 lying on the components
C1 and C2 respectively.

Step 2 There are finitely many arcs from the intersection F s ∩Wu(σ2)
whose endpoints lie on different boundary components of the annulus F s.

Proof of step 2. Let us suppose the contrary. Then there is a point m0 ∈
int F s which is the topological limit of disjoint curves from F s ∩Wu(σ2).
But this contradicts to step 1. ¦

Let us enumerate in cyclic order all arcs from the intersection F s ∩
Wu(σ2) whose endpoints lie on different boundary components of the an-
nulus F s : d1, . . . , dk. Let D1, . . . ,Dk be curves from the W s(σ1)∩Wu(σ2),
containing arcs d1, . . . , dk respectively. We notice that some of curves Di

may coincide.
Step 3 There is at least one nonclosed curve among of the curves D1,

. . . ,Dk.
Proof of step 3. Suppose the contrary. Then using step 1 we can construct

a closed curve which does not intersect the set W s(σ1)∩Wu(σ2) and bounds
(in the W s(σ1)) a disk which contains the point σ1. But this contradicts
step 0. ¦

Step 4 Let D be any nonclosed curve from the set D1, . . . ,Dk. Then at
least one of the next conditions a), b) are fulfilled

a) f i(F s) ∩ D 6= ∅ for all i ≥ 0,
b) f−i(F s) ∩ D 6= ∅ for all i ≥ 0.
Proof of step 4. Suppose the contrary. Then there is a number i0 > 0 such

that D ∈ int (
i=i0⋃

i=−i0

f i(F s)). Then there is a point m0 ∈ int (
i=i0⋃

i=−i0

f i(F s))

such that either any neighbourhood U(m0) contains an infinite set of con-



ON EXISTENCE OF HETEROCLINIC CURVES 65

nected components of the intersections U(m0) ∩ D, or m0 is one of two
boundary points of the curve D. But this contradicts step 1. ¦

Step 5 Each nonclosed curve from the intersection W s(σ1) ∩Wu(σ2) is
invariant for some iterate of the diffeomorphism f .

Proof of step 5. It is enough to prove the statement for any nonclosed
curve D from the set D1, . . . ,Dk. Suppose the contrary, that is f i(D) 6= D.
By step 4 we may suppose for definiteness that D ∩ f i(F s) 6= ∅ for all
i ≥ 0. Then for any i ≥ 0 there is an arc Ai ⊂ (D ∩ f i(F s)) whose
endpoints belong to different boundary components f i(C1) and f i(C2) of
the annulus f i(F s). As D is not f i-nvariant, the union

⋃
i≥0

f−i(Ai) consists

of finitely many disjoint arcs which belong to the annulus F s and whose
endpoints lie on different boundary components of F s. But this contradicts
to step 2. ¦

Step 6 Each nonclosed curve from the intersection W s(σ1)∩Wu(σ2) has
no self-intersections and has the points σ1 and σ2 as its boundary points.

Proof of the step 6. Let us consider again any nonclosed curve D from
the set D1, . . .Dk. Without loss of generality we may assume that the
curve D is f -invariant. Put d = D ∩ F s. Then D =

⋃
i∈ZZ

f i(d). By step

1, the topological limit of the sequence of arcs f i(d) is σ1 as i → +∞
and similarly, the topological limit of the sequence of arcs f i(d) is σ2 as
i → −∞. So we get the result of step 6. ¦

Step 6 completes the proof of the theorem.
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