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1. INTRODUCTION

Recently a plenty of remarkable results have been obtained in the or-
bit theory of non-amenable groups. A. Furman [9] essentially improved
Zimmer’s rigidity theorem for ergodic actions of lattices in higher rank
semisimple Lie groups. Using G. Levitt’s invariant cost and the notion
of treeable equivalence relation studied by S. Adams, D. Gaboriau proved
in [10], in particular, that measure preserving free ergodic actions of free
groups of different ranks on probability spaces cannot be orbit equivalent.
The reader’s attention is attracted to the fact that the results mentioned
above refer to ergodic actions with finite invariant measure. The orbit the-
ory of non-amenable actions with infinite invariant measure (i.e. type II∞
actions) is still not a subject of such an extensive research. This paper
deals with the specific form of ergodic group actions as follows.

* The author is grateful to Professor A. Boutet de Monvel for the hospitality at
University Paris VII and to the Ministry of Foreign Affairs of France for the financial
support granted for the period of work on this paper.
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Let G be a continuous locally compact second countable group with a left
Haar measure µ and Γ a countable dense subgroup of G. Then (G, µ) is a

standard measure space and Γ acts on (G,µ) by left translations: g
γ
7−→ γg,

γ ∈ Γ, g ∈ G. The action of Γ on (G, µ) is ergodic because Γ is dense in G.
Such actions forms a simple but important and interesting class of ergodic
actions (see, for example [16, 22, 23]). Denote the Γ-orbital equivalence
relation by RΓ. If G is amenable as a discrete group (for example, if G
is Abelian or solvable), the equivalence relation RΓ is amenable too (see
[5]). Therefore this case is particularly interesting from the orbital point of
view. The opposite case is partially described by the following important
Zimmer’s theorem (see [23]).

Theorem 1 (R. Zimmer, 1987). If G is a connected non-solvable Lie
group, then RΓ is non-amenable.

Pairs (G,Γ), where G is a connected Lie group and Γ ⊂ G a dense finitely
generated subgroup, and such that the action of Γ on G (by translations)
is stably orbit equivalent to an action of some semisimple Lie group, are
studied in Zimmer’s paper [24]

A lot of interesting questions on the equivalence relation RΓ arise in the
non-amenable case. In this work we consider only one of those, specifically
that of computing the fundamental group of RΓ (see Definition 2) in some
particular cases when Γ acts by translations on a non-compact group G.
Section 1 contains a preliminary information on automorphism groups and
fundamental groups of equivalence relations. In Section 2 we consider the
case when Γ is a projection of an irreducible lattice in a direct product of
some simple Lie groups (real or p-adic); we demonstrate that all the auto-
morphisms of RΓ are measure preserving, i.e. F (RΓ) = {1} (see Theorem
5). To prove this fact, we use both Zimmer’s rigidity theorem for ergodic
actions of semisimple groups [21] and the notion of fundamental group for
ergodic actions of continuous locally compact groups (the latter notion was
introduced in the work [13]; see also [12]). Section 3 is dedicated to the
actions by translations of groups of Q-rational points for semisimple alge-
braic groups. In this case, to prove the triviality of the fundamental group
(Theorem 10) we use a method which was introduced in A. Connes’ work
[4] and was developed in [14], [12] and [11] (see the proof of Proposition
12). This method was applied in [12] to computation the fundamental
groups for actions on non-compact groups of the form K × Z, where K is
a connected compact group with a finite center.
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2. PRELIMINARIES

Let Γ be a countable discrete group and (X, µ) a standard free ergodic Γ-
space with infinite σ-finite invariant measure. Denote by RΓ the Γ-orbital
equivalence relation. Let θ : X → X be a non-singular automorphism of
the measure space (X,µ). θ is called an automorphism of the equivalence
relation RΓ if θ(RΓ(x)) = RΓ(θ(x)) for a.e. x ∈ X, where RΓ(x) = {γx |
γ ∈ Γ} is the Γ-orbit of x. Denote the automorphism group of RΓ by
Aut(RΓ). It is well known that if θ ∈ Aut(RΓ) then there exists λ =
mod θ > 0, such that µ ◦ θ = λµ. We refer the reader to [8], [7] and [18]
for a detailed exposition of the theory of ergodic equivalence relations and
their automorphisms.

Definition 2. The fundamental group of the equivalence relation RΓ

is the following subgroup in R∗
+:

F (RΓ) = {mod θ | θ ∈ Aut(RΓ)}.

It is easy to see that the fundamental group is invariant of stable orbit
equivalence (see [7]). If the equivalence relation RΓ is amenable, then
F (RΓ) = R∗

+ (see [5] and [8]).

Remark 3. If (X, µ) is a free ergodic Γ-space with finite invariant mea-
sure and RΓ is a Γ-orbital equivalence relation, then

F (RΓ)
def
= F (RΓ × I∞),

where I∞ is the transitive equivalence relation on Z. The properties of
fundamental groups of type II1 equivalence relations are exposed in [12]
and [9, §2].

Recall the definition of the fundamental group for the equivalence rela-
tion associated to an ergodic action of a continuous locally compact group
[13, 12].

Let T be a continuous locally compact second countable unimodular
group and (Y, ν) a standard free properly ergodic T -space with finite invari-
ant measure. Consider the ergodic equivalence relation RT . Let S ⊂ Y be a
complete countable type II∞ section for the action of T . Then RT

∼= R̃×I,
where R̃ is the equivalence relation on S with countable orbits (discrete re-
duction of type II∞) and I the transitive equivalence relation generated by
the translation of the circle (see Th. 6.4 in [7]). Let θ be an automorphism
of RT . According to Theorem 2.4 [15], there exist θ̃ ∈ Aut(R̃) and an inner

automorphism w of RT , such that θ = (θ̃× id)w. We set mod θ
def
= mod θ̃

(see Definition 2.9 and Remark 2.10 in [15]). Clearly, mod θ does not de-
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pend on the choice of a discrete reduction R̃ and on the representation of
θ as a product (θ̃ × id)w.

Definition 4. The group F (RT ) = {mod θ | θ ∈ Aut(RT )} is called
the fundamental group of the equivalence relation RT .

We will use the standard notation and terminology concerning the theory
of algebraic groups(see Ch.I in [18] and Ch.3 in [21]).

3. ACTIONS OF IRREDUCIBLE LATTICES

For each prime p ∈ N denote by Qp the field of p-adic numbers, and set
Q∞ = R. Let V = {primes in N}∪{∞}, and p1, p2, . . . , pm ∈ V . Suppose
that for each pi, Hpi

is a connected almost Q-simple linear algebraic Q-

group such that the group Hpi
(Qpi

) is not compact. Let B =
m∏

i=1

Hpi
(Qpi

),

so that B is a locally compact non-compact group. Suppose that Λ is an
irreducible lattice in B (see 2.2.4 and p.188 in [21]) and fix some non-trivial
subset I0 ⊂ {1, 2, . . . , m}. Consider G =

∏
i∈I0

Hpi
(Qpi

) and Γ = πI0(Λ),

where πI0 : B → G is a projection onto G. Then G is a locally compact
non-compact group and Γ is a dense subgroup in G. Consider the action of
Γ on G by left translations and denote by RΓ the corresponding equivalence
relation.

Theorem 5. Suppose
∑

i/∈I0

Qpi
−rank(Hpi) ≥ 2 (see Section 5 of Ch. VII

in [17]). Then all the automorphisms of RΓ preserve a Haar measure on
G, i.e. F (RΓ) = {1}.

We need the following

Lemma 6. Let G and T be locally compact second countable groups, Λ
be a closed subgroup of G × T and Γ = πG(Λ), where πG : G × T → G is
a projection. Then the action of Γ on G by left translations is stably orbit
equivalent to the T -action on the homogeneous space X = Λ \ (G× T ).

Proof. Let RΓ and RT be Γ-orbital and T -orbital equivalence rela-
tions, respectively, x1, x2 ∈ X, x1 = Λ(g1, t1) and x2 = Λ(g2, t2). We
first prove that x1 ∼

RT

x2 ⇔ g1 ∼
RΓ

g2. Indeed, x1 ∼
RT

x2 ⇔ Λ(g2, t2) =

Λ(g1, t1t
−1) for some t ∈ T , i.e., (g2, t2) = (λ1g1, λ2t1t

−1), where (λ1, λ2) ∈
Λ. It follows that g2 = λ1g1, i.e., g1 ∼

RΓ

g2. Conversely, suppose that

g1 ∼
RΓ

g2. Then there exists γ = πG(γ, t) such that g2 = γg1 and (γ, t) ∈ Λ.

Hence Λ(g2, t2) = Λ(γg1, t2) = Λ(g1, t
−1t2) = Λ

(
g1, t1

(
t2
−1tt1

)−1
)
, i.e.,
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x1 ∼
RT

x2. We now consider a Borel section s : X → G× T of the natural

projection and define a Borel map F : X×Λ → G×T by: F (x, λ) = λs(x).
Then F is a nonsingular Borel isomorphism. We claim to show that F is
also an isomorphism of the equivalence relations RT×IΛ and RΓ×IT , where
IΛ and IT are transitive equivalence relations on Λ and T , respectively. In-
deed, let s(xi) = (g′i, t

′
i), i = 1, 2. Then Λ(gi, ti) = Λ(g′i, t

′
i), i = 1, 2.

Now we have F (x1, λ1) ∼
RΓ × IT

F (x2, λ2) ⇔ λ1s(x1) ∼
RΓ × IT

λ2s(x2) ⇔
λ1(g′1, t

′
1) ∼

RΓ × IT

λ2(g′2, t
′
2) ⇔ g′1 ∼

RΓ

g′2 ⇔ g1 ∼
RΓ

g2 ⇔ x1 ∼
RT

x2 ⇔
(x1, λ1) ∼

RT × IΛ

(x2, λ2).

Proof (of the Theorem 5). We set T =
∏

i/∈I0

Hpi
(Qpi

). Then B = G× T

and rank(T ) =
∑

i/∈I0

Qpi
−rank(Hpi

) ≥ 2. Since Λ is an irreducible lattice,

the action of T on X = Λ\B is irreducible too (see 2.2.11, 2.2.12 and p.118
in [21]). Next, consider the T -orbital equivalence relation RT . In view of
Lemma 6, RΓ×I is isomorphic to RT , where I is the transitive equivalence
relation generated by translations of the circle. Hence F (RΓ) = F (RT ).
Now our statement follows from general Zimmer’s rigidity theorem [21,
Th.10.1.8] and from the arguments used to prove Th.1 in [13] (see also
Th.B.2 in [12]).

Example 7. We denote by Z[
√

2] the ring of integers of the field Q(
√

2).
For a + b

√
2 ∈ Z[

√
2], we set σ(a+b

√
2) = a−b

√
2. Let Γ = SLn(Z[

√
2]),

so that for γ ∈ Γ, σ(γ) has an obvious meaning. Consider now Λ =
{(γ, σ(γ)) | γ ∈ Γ}. Then Λ is an irreducible lattice in SLn(R) × SLn(R)
and Γ ∼= Λ (see Example (v), p.296 in [17]). Consider the equivalence
relation RΓ generated by left translations of Γ on G = SLn(R). If n ≥ 3,
then R−rank(G) = n − 1 ≥ 2 [21, 5.1]. Hence all automorphisms of RΓ

preserve a Haar measure on G.

Example 8. For each finite subset S = {p1, p2, . . . , pm} of primes, let
Z[S−1] be the ring of rationals whose denominators (in reduced form) have
prime factors in S, and let Γ = SLn(Z[S−1]), n ≥ 3. Identify Γ with its
image under the diagonal embedding into B = SLn(R) × SLn(Qp1

) × . . .
×SLn(Qpm

). Then Γ is an irreducible lattice in B (see Example (iii), p.295
in [17]). Consider the equivalence relation RΓ generated by translations of
Γ on G = SLn(R). Then F (RΓ) = {1}.

Example 9. With S, Γ and B as above, we let now G = SLn(Qp1
) ×

. . . × SLn(Qpm
). Identify Γ with its image under the diagonal embedding

into B. Then Γ is a dense subgroup of G. It follows from Theorem 5 that
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all the automorphisms of equivalence relation RΓ preserve a Haar measure
on G.

4. ACTIONS OF THE GROUPS Q-RATIONAL POINTS

Actions by translations of the group Q-rational points of semisimple
linear algebraic groups are considered in this section. The proof of Theorem
10 is based on the methods of the works [4], [14] and [12].

Let H be a connected semisimple linear algebraic Q-group, p a prime in
N, G = H(Qp), and Γ = H(Q). Suppose that H is a simply connected,
almost Q-simple, and assume H(Qp) is non-compact and H(R) has no
compact factors. Then G is a locally compact non-compact group and Γ is
a dense subgroup in G (see II.6.8 in [17]).

Theorem 10. Suppose that H(R) has Kazhdan’s property (T) (see Ch.
III in [17]), and that the center of H(R) is trivial. Consider the equiva-
lence relation RΓ generated by left translations of Γ on G. Then all the
automorphisms of RΓ preserve a Haar measure on G.

Proof. Set Λ = H(Z), and let K denote the closure of Λ in G. It
is well known that Λ is a lattice in H(R) and K is open and compact
in G (see [1] and [19]). Moreover, since H(R) has Kazhdan’s property
(T), Λ has also Kazhdan’s property (T) )(see Ch.III, 2.12 in [17]). We set
Γ1 = Γ ∩K. Since H is connected simply connected semisimple R-group,
H(R)is connected (see [17, pp. 52-53]). Therefore Γ1 is an ICC-group with
respect to Λ, i.e. for each γ ∈ Γ1, γ 6= e the set {λγλ−1 | λ ∈ Λ} is infinite
(see Pr.1.6 in [12]).

We need the following simple lemma and two general propositions.

Lemma 11. Let G be a locally compact second countable group, Γ be a
countable dense subgroup of G, L an open subgroup in G and Γ1 = Γ ∩ L.
Set

A =
{

Z , if [G : L] = ∞
Z /mZ , if [G : L] = m

Consider a Borel section s : G /L → G such that G =
⋃

n∈A

γnL, where

{γn | n ∈ A} = s(G /L) ⊂ Γ. Define the Borel map ϕ : L× A → G by set-
ting ϕ(k, n) = γnk. Then ϕ is an isomorphism of the equivalence relations
RΓ1×IA and RΓ, where IA is a transitive equivalence relation on A. More-
over ϕ(rL

t × id)ϕ−1 = rt, t ∈ L, with rt being the right translation, i.e.
rt(g) = gt−1, g ∈ G, and rL

t a restriction of rt on L.

Proposition 12. Let G, Γ, rt be as in 11. Suppose L is compact, but G
is non-compact. Consider the action of Γ on G by left translations and de-
note by RΓ the corresponding equivalence relation. Let θ ∈ Aut(RΓ) and ε
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be the natural projection from Aut(RΓ) onto Out(RΓ) = Aut(RΓ) /Int(RΓ).
If ε(θ) belongs to the centralizer of ε({rt | t ∈ L}) in Out(RΓ), then θ pre-
serves a Haar measure on G.

Proof. Let Γ1 and ϕ be as in Lemma 11. Since [G : L] = ∞, ϕ is
an isomorphism of the equivalence relations RΓ × I∞ and RΓ. Moreover,
ϕ−1rtϕ = rL

t × id, t ∈ L. Next, since ε(θ) belongs to the centralizer of
ε({rt | t ∈ L}), we have θrt = δtrtθ, t ∈ L, where δt ∈ Int(RΓ). Hence
we obtain (ϕ−1θϕ)(rL

t × id) = (ϕ−1δtϕ)(rL
t × id)(ϕ−1θϕ), t ∈ L. By

Proposition 5.3 [12], ϕ−1θϕ preserves the measure, thus so does θ.

Proposition 13. Let G be a locally compact non-compact second count-
able unimodular group, Γ a countable dense subgroup in G, K an open
compact subgroup in G, and Γ1 = Γ∩K. Let RΓ be an equivalence relation
generated by left translations of Γ on G. Suppose that there exists a sub-
group Λ in Γ1 such that Λ has property (T), Λ is dense in K, and Γ1 is an
ICC-group with respect to Λ. Moreover, assume the following conditions
are satisfied:

(i) for each open subgroup K1 ⊂ K and its continuous injective homomor-
phism f : K1 → G there exist an open subgroup K2 ⊂ K1 and a continuous
automorphism σ ∈ Aut(G) such that f(k) = σ(k), k ∈ K2;
(ii) for each g ∈ G, g 6= e, the right translation rg is an outer automorphism
of RΓ;
(iii) Out(G) is torsion.

Then all the automorphisms of RΓ preserve a Haar measure on G.

Proof. By Lemma 11, there is an isomorphism of equivalence relations
RΓ and RΓ1 × I∞ which intertwines the right translations from Aut(RΓ1 ×
I∞) with those from Aut(RΓ). It follows from the condition (ii), the proof
of Lemma 5.1 [12], and Proposition 5.2 [12] that ε({rg | g ∈ G}) is an
open subgroup in Out(RΓ) which is topologically isomorphic to G (for the
definition and basic properties of the topology on Aut(RΓ), we refer the
reader to [6] §3 and [12] §§2, 5). Therefore the space X = Out(RΓ) /G is
discrete (we identify ε({rg | g ∈ G}) with G here). Let us consider the

action of K on X by left translations: x = qG
k7−→ kx = kqG, where q ∈

Out(RΓ) and k ∈ K. Since K is compact, the orbit of any x ∈ X is finite.
Let θ ∈ Aut(RΓ) and K1 be the stabilizer of ε(θ)G, i.e. K1 = {k ∈ K |
kε(θ)G = ε(θ)G}. Then K1 is open in K and ε(θ)−1K1ε(θ) ⊂ G. Define
the homomorphism f : K1 → G by setting f(k) = ε(θ)−1kε(θ), k ∈ K1.
It follows from (i) that there exist an open subgroup K2 ⊂ K1 and σ ∈
Aut(G) such that f(k) = ε(θ)−1kε(θ) = σ(k), k ∈ K2. Now let σn ∈
Int(G), i.e. there exists g0 ∈ G such that σn(g) = g0gg−1

0 , g ∈ G. Set
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up L =
n−1⋂
j=0

σ−j(K2). Then L is open in K2 and σj(L) ⊂ K2, j =

0, 1, . . . , n − 1. Therefore we obtain ε(θ)−ntε(θ)n = σn(t) = g0tg
−1
0 for all

t ∈ L. This implies that ε(θ)ng0t = tε(θ)ng0, t ∈ L, i.e. ε(θnrg0)ε(rt) =
ε(rt)ε(θnrg0), t ∈ L. Now an application of Lemma 11 and Proposition
12 shows that the automorphism θnrg0 preserves a Haar measure. Hence θ
also has this property.

We turn back to the proof of Theorem 10. Now it suffices only to verify
only that the conditions (i), (ii) and (iii) of Proposition 13 are satisfied.
Let f : K1 → G be a continuous injective homomorphism, for K1 an
open subgroup in K. Since K1 is open in G, K1 is a p-adic Lie subgroup
of G = H(Qp). Thus, by Cartan’s theorem [2, Ch.III, §8, Th.1], f is
an analytic homomorphism of p-adic Lie groups. Therefore f induces a
homomorphism L(f) of the p-adic Lie algebras L(K1) and L(G). Since K1

is open in G, L(K1) = L(G). Moreover, L(f) is injective (see Ch.III, §3,
Pr.8 in [2]). Thus, L(f) is an automorphism of L(G). We may also view
L(f) as a Qp-automorphism of the Lie algebra L(H). Since H is semisimple
and simply connected, there exists an automorphism σ ∈ Aut(H) whose
differential is L(f), Furthermore, σ is defined over Qp (see Pr.1.4.13, Ch.I
in [17]). Hence σ(G) is a finite index subgroup in G (see p.34 in [21]). It
follows from 2.3.2 and 2.3.6, Ch.I [17] that σ(G) = G, i.e. σ ∈ Aut(G).
According to Theorem 3 of §7, Ch.III in [2] there exists an open subgroup
K2 in K1 such that f(k) = σ(k) for k ∈ K2. Next, consider rg ∈ Int(RΓ).
The subgroup N = {rh | h ∈ G} ∩ Int(RΓ) is normal in {rh | h ∈ G} ∼= G.
We shall show that N 6= G. Let γ1, γ2, . . . , γm be generators of the group
Λ (see Ch.III in [17]). If rγi ∈ Int(RΓ), then there exist open subgroups
Fi ⊂ G, i = 1, . . . , m such that γi lies in the centralizer of Fi (see Remark

2.8 in [11]). Set up F =
m⋂

i=1

Fi. Then F is an open subgroup in G and

F is contained in the centralizer of Λ. It follows from Borel’s density
theorem that F ⊂ Z(G) (see Ch. V in [20]). We obtain the contradiction.
Therefore rγi ∈ Int(RΓ), i.e. N 6= G. It follows from 2.3.2 and 2.3.6, Ch.I
[17] that N ⊂ Z(G). Hence g ∈ Z(G). Since rg ∈ Int(RΓ), we obtain
g ∈ Γ, i.e. g ∈ Z(Γ) ⊂ Z(H(R)) = {e}. Finally, since the group of outer
automorphisms Aut(G) /Int(G) is finite (this follows from the results of §5
(see sections 3, 4 and Exercise 11), Ch.VIII [3]), we have that the condition
(iii) is satisfied.

Thus Theorem 10 is proved completely.

Example 14. Let G = SLn(Qp) and Γ = SLn(Q), n ≥ 3. Then
F (RΓ) = {1}. In fact, if n is odd, then SLn(R) has the trivial cen-
ter. Hence the result follows from the theorem. Suppose now n is even.
Then Z(SLn(R)) = {±1} and the center of SLn(R) /{±1} = PSLn(R)
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is trivial. We consider the action of Γ̃ = Γ /{±1} on G̃ = G /{±1}.
It is easy to see that equivalence relations RΓ and R

Γ̃
are isomorphic.

Hence F (RΓ) = F (R
Γ̃
). Next, if θ is an automorphism of the Lie algebra

L(G̃) = sln(Qp), then either θ(x) = axa−1 or θ(x) = −a txa−1, where
a ∈ GLn(Qp) (see §13, Ch. VIII [3]). Therefore, for every θ ∈ Aut(L(G̃))
there exists an automorphism σ ∈ Aut(G̃) whose differential is θ. Our
result now follows from Proposition 13 and from the proof of Theorem 10.

To conclude, we find it worthwhile to mention some interesting open
problems related to the fundamental group of RΓ.

Problem 15. Compute F (RΓ) in the following cases:

(i) G = SLn(R), Γ = SLn(Q), n = 2 and n ≥ 3;
(ii) G = SL2(Qp), Γ = SL2(Q).

Problem 16. Do the groups like G and Γ with F (RΓ) 6= R∗
+ and

F (RΓ) 6= {1} exist?
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10. D. Gaboriau, Coût des relations d’équivalence et des groupes, Invent. math. 139
(2000), 41–98.

11. S.L. Gefter, Outer automorphism group of the ergodic equivalence relation gener-
ated by translations of dense subgroup of compact group on its homogeneous space,
Publ. RIMS, Kyoto Univ., 32 (1996), 517–538.

12. S.L. Gefter and V.Ya. Golodets, Fundamental groups for ergodic actions and
actions with unit fundamental groups, Publ. RIMS, Kyoto Univ., 24 (1988), 821–
847.



124 S. L. GEFTER

13. S.L. Gefter, V.Ya. Golodets and S.D. Sinel’shchikov, The fundamental group
for ergodic actions of semisimple Lie groups and their lattices, (in Russian), Dokl.
UkrSSR Acad. Sci., 8 (1987), 6–9.

14. V.Ya. Golodets and N.I. Nessonov, T-Property and nonisomorphic full factors of
types II and III, J. Funct. Anal., 70 (1987), 80–89.

15. V.Ya. Golodets and S.D. Sinel’shchikov, Outer conjugacy for actions of contin-
uous amenable groups, Publ. RIMS, Kyoto Univ., 23 (1987), 737–769.

16. G.W. Mackey, Ergodic transformation groups with a pure point spectrum, Ill. J.
Math., 8 (1964), 593-600.

17. G.A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin,
1991.

18. C.C. Moore, Ergodic theory and von Neumann algebras, Proc. Symp. Pure Math,
38 (1982), part 2, 179–226.

19. V.P. Platonov, Arithmetical theory of algebraic groups, (in Russian), Uspekhi Mat.
Nauk, 37 (1982), 3–54.

20. M.S. Raghunathan, Disrete subgroups of Lie groups, Springer-Verlag, Berlin–
Heidelberg–New-York, 1972.

21. R.J. Zimmer, Ergodic theory and Semisimple Groups, Birkhäuser, Boston, 1985.
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