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We consider a class of discrete groups which have no ergodic actions by
translations on continuous non-compact locally compact groups. We also study
dense embeddings of Zn (n > 1) into non-compact locally compact groups.
Moreover, we study some discrete groups which admit no embeddings into
almost connected locally compact groups. In particular, we prove that a lattice
in a simple Lie group with property (T) cannot be embedded densely into a
connected non-compact locally compact group.
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1. INTRODUCTION

Let G be a non-discrete locally compact group with a left Haar measure µ,
and Γ a countable dense subgroup of G. Then Γ acts on the measure space
(G,µ) by left translations. Such actions form a simple but important class
of ergodic actions (see [10] and [16]). A lot of interesting questions arise
on actions mentioned above (see, for example, [8], [9], [11], [17] and [4]).
Dense embeddings of group Zn (n > 1) into non-compact locally compact
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groups are considered in the present paper (see Section 2). Moreover, we
study some specific discrete groups which admit no embeddings into almost
connected locally compact groups (see Section 3).

The paper contains the extended text of the two lectures given at the
Conferens on ”Dynamical Systems and Ergodic Theory” Katsiveli (Crimea,
Ukraine), August 21-30, 2000.

2. DENSE EMBEDDINGS OF DISCRETE ABELIAN
GROUPS

A topological group H is called monothetic if there exists a cyclic sub-
group Λ which is dense in H. It is well known that a locally compact
monothetic group is either compact or discrete (see, for example, Theo-
rem 19 in [13]). To rephrase, the group of integers Z cannot be embedded
densely into a non-discrete non-compact locally compact group.

Definition 1. We say that a discrete group Γ has Z-property if Γ can-
not be embedded densely into a continuous locally compact non-compact
group.

Example 2. For a prime p we set Cp∞ = {z ∈ T | zpn

= 1 for some n}.
Let us show that the quasicyclic group Cp∞ has Z-property. Let ϕ : Cp∞ →
G be a dense embedding of Cp∞ into a locally compact group G. Then
G is Abelian. Hence there exists an open subgroup G1 ⊂ G which is
topologically isomorphic to Rm×K, where K is a compact group (see Th.
24.30 in [6]). Let Γ1 = ϕ−1(G1). Then ϕ(Γ1) is dense in G1. If Γ1 is finite,
then G1 is finite and open. Therefore G is discrete. Assume now that Γ1

is infinite. Then Γ1 = Cp∞ . Since ϕ(Cp∞) = G and G1 is open, G1 = G.
Hence ϕ is a dense embedding of Cp∞ into Rm×K. Since the elements of
Cp∞ have finite order m = 0, i.e. G is compact.

Problem 3. Prove that Cp∞ has property (Z) without using the struc-
tural theory of locally compact Abelian groups.

The following theorem provides a complete description of Abelian groups
with Z-property.

Theorem 4 ([5, Theorem 1.1]). Let Γ be an infinite discrete Abelian
group with Z-property. Then either Γ ∼= Z× F or Γ ∼= Cp∞ × F , where F
is a finite Abelian group.

Remark 5. There exists discrete Abelian groups which admit dense
embeddings only into non-compact locally-compact groups of the form K×
D, where K is a compact group and D is a discrete group. Let us say
that these groups have weak property (Z). The infinite direct sum of cyclic
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groups Z(p) is an example of such a group. This follows from J.Braconnier’s
theorem (see [6, Section 25.29]).

Remark 6. It is interesting to observe that an infinite periodic Abelian
group cannot be embedded densely into a compactly generated (and, in
particular, into an almost connected) locally compact non-compact group.
Indeed, let G be a compactly generated locally compact group and Γ a pe-
riodic Abelian dense subgroup of G. By Theorem 9.8 [6], G is topologically
isomorphic to Rm×Zn×K, where K is a compact group. Since Γ is dense
in G, m = n = 0, i.e. G is compact.

The following theorem is the main result of this Section. It contains
a description of the structure for non-compact locally compact Abelian
groups which have finitely generated dense subgroups.

Theorem 7. Let G be a non-compact locally compact Abelian group.
If Zn (n > 1) can be densely embedded into G then G is topologically
isomorphic to K ×Rl × Zm, where K is a compact group, l + m + 1 ≤ n
and l + m ≥ 1.

Proof. We shall show that G is a compactly generated group. Let
ϕ : Zn → G be a dense embedding, G0 the component of the identity of G,
and π be the natural projection from G onto G̃ = G /G0. Then G̃ is totally
disconnected and (π ◦ ϕ)(Zn) is dense in G̃. Let Q be an open compact
subgroup in G̃ (see Theorem 7.7 in [6]). Then the image of Zn in the
factor group G̃ /Q is dense and G̃ /Q is discrete. Therefore G̃ /Q is finitely
generated. By Proposition 5.39 (i) of [6], G̃ is compactly generated group.
Hence G also has this property (see Theorem 7.4 and Proposition 5.39 (i)
in [6]). According to Theorem 9.8 of [6] G is topologically isomorphic to
K×Rl×Zm, where K is a compact. To prove the inequality l+m+1 ≤ n
we generalize the arguments from Section 2 of [2]. Let H be a topologically
finitely generated group. We set

σ(H) = min{k : there exist h1, h2, . . . , hk ∈ H such that

H is topologically generatedby h1, h2, . . . , hk}. (1)

It may be proved that σ(Rl × Zm) = l + m + 1 (see Proposition 2.3 in
[2]). Since Rl ×Zm is a quotient of K ×Rl ×Zm, we obtain from Lemma
2.2 of [2]

σ(K ×Rl × Zm) ≥ σ(Rl × Zm) = l + m + 1.

Hence n ≥ σ(K ×Rl × Zm) = l + m + 1.

The following theorem generalizes Proposition 2.4 of [2].



34 M.S.BOYKO, S.L.GEFTER, K.M.KULAGIN

Theorem 8. Let K be a compact monothetic group. If l and m are
non-negative integers, then there exists a dense embedding of Zl+m+1 into
K ×Rl × Zm.

Proof. We show that σ(K ×Rl × Zm) = l + m + 1, where σ is defined
in (0). Consider the exact sequence

0 → Zl × Zm → K ×Rl × Zm → K ×Tl → 0.

Since K ×Tl is monothetic (see Theorem 25.17 in [6]), σ(K ×Tl) = 1.
By Lemma 2.1 of [2], we have

σ(K ×Rl × Zm) ≤ σ(Zl+m) + σ(K × T l) = l + m + 1.

By Lemma 2.2 and Proposition 2.3 of [2], we obtain

σ(K ×Rl × Zm) ≥ σ(Rl × Zm) = l + m + 1.

Hence σ(K ×Rl × Zm) = l + m + 1.

3. DENSE EMBEDDINGS OF DISCRETE GROUPS INTO
ALMOST CONNECTED GROUPS

Let G be a topological group. Let us denote by G0 the connected com-
ponent of the identity in G. We say that G is almost connected if the
quotient group G /G0 is compact.

Theorem 9. Let Γ be a simple discrete group; assume it to be nonlinear
over the field C (i.e. Γ cannot be embedded into any GL(n,C)). Then Γ
cannot be embedded into an almost connected locally compact group.

Proof. The proof consists of several steps.
(1) Show that Γ cannot be embedded into a compact group. Let G be

a compact group and ϕ : Γ → G be an embedding. According to the
Peter - Weyl theorem, for a γ ∈ Γ, γ 6= e, there exists a homomorphism
ψ : G → U(n) such that ψ (ϕ(γ)) 6= I (see §22 in [6]). We may assume
that ψ : G → GL(n,C). Consider the homomorphism ϑ : Γ → GL(n,C),
ϑ = ψ ◦ ϕ. Then ϑ(γ) 6= I. Hence Ker ϑ 6= Γ. On the other hand Ker ϑ is
a normal subgroup of Γ and Γ is a simple group. Therefore, Ker ϑ = {e},
i.e., ϑ : Γ → GL(n,C) is an injective homomorphism. This contradicts
the assumption of nonlinearity of Γ.

(2) Check that Γ cannot be embedded into a connected Lie group. Sup-
pose ϕ : Γ → G is such an embedding. Let AdG : G → GL (g) be the
adjoint representation of G, where g is the Lie algebra of G (dimg < ∞).



ON DENSE EMBEDDINGS OF DISCRETE GROUPS 35

It is well-known that Ker AdG = Z, where Z is the center of G. We may
assume that AdG : G → GL(n,C). Consider the homomorphism ϑ :
Γ → GL(n,C), ϑ = AdG ◦ϕ. Since Γ is simple, Ker ϑ = {e} or Ker ϑ = Γ.
But Γ is nonlinear over C. Hence Ker ϑ = Γ, i.e., ϕ(Γ) ⊂ KerAdG = Z.
Since the homomorphism ϕ is injective, it follows from the above inclusion
that Γ is Abelian. This contradicts our assumption on Γ.

(3) Now prove that Γ cannot be embedded into a connected locally com-
pact group. Suppose ϕ : Γ → G is an embedding and G is a connected
locally compact group. Let U be a compact neighborhood of the identity
in G. It is well-known from the structure theory of locally compact groups
that there exists a closed normal subgroup N ⊂ U such that G /N is a
connected Lie group (see [14]). Since U is compact, N is compact too. Let
π : G → G /N be the natural projection. Consider the homomorphism
ϑ : Γ → G /N, ϑ = π ◦ϕ. As in the previous part of the proof, we deduce
that Ker ϑ = {e} or Ker ϑ = Γ. If Ker ϑ = {e}, then ϑ : Γ → G /N is
an embedding of Γ into a connected Lie group, which contradicts the part
(2). If Ker ϑ = Γ, then ϕ(Γ) ⊂ N . Thus ϕ : Γ → N is an embedding of Γ
into a compact group, which contradicts part (1).

(4) Finally, let G be an almost connected group and ϕ : Γ → G an
embedding. Consider the natural map π : G → G /G0. Set ϑ = π ◦ ϕ.
Then ϑ : Γ → G /G0. If Ker ϑ = {e}, then ϑ is an embedding of Γ into a
compact group, which contradicts part (1). If Kerϑ = Γ, then ϕ(Γ) ⊂ G0.
Therefore, ϕ : Γ → G0 is an embedding of Γ into a connected locally
compact group, which contradicts part (3).

This completes the proof.

Corollary 10. Let S∞ be the group of finite permutations on a count-
able set. Then S∞ cannot be embedded into an almost connected (and, in
particular, into a connected) locally compact group.

Proof. It suffices to show our statement for the subgroup A∞ of even
permutations. It follows from the classical Jordan theorem about finite
subgroups of GL(n,C) (see [12, p.404]) that A∞ is nonlinear (see also
Theorem 8.6 in [7]). Since A∞ is simple, the result now follows from the
theorem.

Problem 11. Find a straightforward proof of this statement which does
not use the theory of unitary representations and the structure theory of
locally compact groups.

Corollary 12. Let Γ be an infinite finitely generated group without
nontrivial finite quotient groups. Then Γ cannot be embedded into an almost
connected locally compact group.

Proof. By Mal’cev’s theorem finitely generated linear groups are re-
sidually finite.
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Example 13. Let Γ be G.Higman’s group; that is, Γ is defined by
generators x1, x2, x3, x4 and the relations

x2x1x
−1
2 = x2

1,

x3x2x
−1
3 = x2

2,

x4x3x
−1
4 = x2

3,

x1x4x
−1
1 = x2

4.

Then Γ has no nontrivial finite quotient groups (see, [15, pp. 9-10]). Thus,
Γ cannot be embedded into an almost connected (in particular, into a
compact and into a connected) locally compact group.

For the proof of the following theorem we shall use Margulis’ superridigity
theorem for lattices in semisimple Lie groups (see [11], [18] and [3]).

Theorem 14. Let H be a connected non-compact simple Lie group with
finite center and Γ a lattice in H. Suppose that H has Kazhdan’s prop-
erty (T) (see Ch.III in [11]). Then Γ cannot be embedded densely into a
connected non-compact locally compact group.

Proof. Let G be a connected locally compact group and ϕ : Γ → G be
a homomorphism with a dense image. We shall show that G is compact.

We first consider the case when G is a connected Lie group. Let R be
a solvable normal subgroup in G such that the quotient group G1 = G /R
is a semi-simple Lie group. We may take G1 to be the adjoint group (see
§8, Ch. III in [1]). If π : G → G1 be the natural projection, then
ρ = π ◦ ϕ is a homomorphism from Γ into G1 with a topologically dense
image. In particular ρ(Γ) is Zariski dense and by superrigidity G1 is a
compact group, because the other alternative ρ(Γ) being a lattice in G1

contradicts the density assumption (see §5, Ch.III and §5, Ch.VII in [11],
and [3]). Next, since Γ has property (T), G and R also have this property
(see Ch.III, Corollary 2.13 in [11]). We obtain from amenability of R, that
R is compact (see Corollary 7.1.9 in [18]). Therefore, G is a compact group.

Now let G be an arbitrary connected locally compact group. Then there
exists a compact normal subgroup K ⊂ G such that G /K is a connected
Lie group (see [14]). If θ : G → G /K be the natural projection and
ψ = θ ◦ϕ, then we obtain a homomorphism ψ : Γ → G /K with ψ(Γ) dense
in G /K. Hence G /K is a compact Lie group and G is compact too.

This complete the proof.

Remark 15. If H has no property (T), then the conclusion of Theorem
14 may not be fulfilled. For example the lattice Γ = SL2(Z) in H =
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SL2(R) is virtually a free group, hence Γ can be densely embedded into
a connected non-compact locally compact group. The referee of present
paper conjectured that such an embedding may be built for a lattice in
any rank-one group without property (T), i.e. in H = SO(n, 1) or H =
SU(n, 1).
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