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Let [a, b] be a compact real interval and f : [a, b] → [a, b] a continuous
map from [a, b] into itself. We say that f is topologically mixing if for any
open U, V ⊂ [a, b] there exists an N such that fn(U) ∩ V 6= ∅ for any n > N .
Denote by A(f) the set of those from points a, b which have no preimages
in (a, b) and ent(f) the topological entropy of f . We show the following:
If f : [a, b] → [a, b] satisfies the conditions (i) f is topologically mixing, (ii)
A(f) = ∅, (iii) ent(f) = log ν < ∞, then f has a ν-Lipschitz extension, i.e.
there exist a ν-Lipschitz map g: [a, b] → [a, b] and a nondecreasing surjective
map h: [a, b] → [a, b] such that f ◦ h = h ◦ g.
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1. INTRODUCTION

There is a famous theorem of Parry [8] that enables to conjugate any
piecewise monotone transitive interval map f to a piecewise linear one
with slope ± expent(f), where ent(f) is the topological entropy of f . We
prove some consequences of this theorem for interval maps that are not
piecewise monotone. For a sufficiently large class of topologically mixing
maps with finite entropy we obtain - rather surprisingly - that any such
map has a Lipschitz extension, where the achieved Lipschitz constant is
the least possible and it corresponds to the topological entropy again. Our
result shows that - in a sense - Lipschitz interval maps provide the same
combinatorial complexity as general ones. As far as we know the research
of these phenomena is quite at the beginning and most of questions remain
open.

*The author was supported by the Grant Agency of the Czech Republic, contract no.
201/00/0859.
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Let [a, b] be a compact real interval and let f : [a, b] → [a, b] be a con-
tinuous map from [a, b] into itself. We say that f is topologically mixing
if for any open U, V ⊂ [a, b] there exists an N such that fn(U) ∩ V 6= ∅
for any n > N . Denote by A(f) the set of those from points a, b which
have no preimages in (a, b) and by ent(f) the topological entropy of f . As
usually, a continuous map g: [a, b] → [a, b] is an extension of f if there is a
surjective continuous map h: [a, b] → [a, b] such that

f ◦ h = h ◦ g on [a, b].

We say that g is a ν-Lipschitz extension if g is a ν-Lipschitz map.
Our main result is the following.

Theorem 21. Let f ∈ C([a, b]) be topologically mixing and satisfying
ent(f) = log ν ∈ R, A(f) = ∅. There exists a ν-Lipschitz extension of f .

Remark 1. Let us briefly discuss two conditions from Theorem 21: (i) f
is topologicaly mixing and (ii) A(f) = ∅. Using the results from [2] it is
not difficult to show that instead of property (i) we could assume a more
general case of dense set of periodic points of f . Concerning the property
(ii) we do not know whether it cannot be removed. Moreover, we do not
know what is the class of maps satisfying (i),(ii) for which Theorem 21
describes a Lipschitz map conjugated (not only semiconjugated) to f - by
Parry’s Theorem this class involves all piecewise monotone maps satisfying
(i).

The paper is organized as follows:
In Section 2 we give some basic notation and definitions. Section 3

is devoted to the known needed results used throughout the paper. In
Section 4 we prove several auxiliary results that will be useful when proving
Theorem 21. The main results of this section are Lemmas 17-19. Section
5 is devoted to the proof of Theorem 21 and in Appendix we prove two
technical lemmas from Section 4 - Lemma 14 and Lemma 19.

2. NOTATION AND DEFINITIONS

By R,N,N0 we denote the sets of real, positive and nonnegative integer
numbers respectively. Let T be a compact subset of R. We consider a
space C(T ) of all continuous maps g, which are defined on T and mapping
it into itself. For g ∈ C(T ) and a nonempty set (maybe onepoint) J ⊂ T
the set orb(J, g) = {gi(J) : i ∈ N0} is called the orbit of J . We write
orb(x, g) if J = {x}. As usually, the ω-limit set ω(x, g) of x ∈ T consists of
all the limit points of {gi(x): i ∈ N}. A point x ∈ T is called g-recurrent
if x ∈ ω(x, g).
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We say that a point x ∈ T is periodic if gn(x) = x for some n ∈ N. Such
an n is called the period of x and the pair (orb(x, g), g) is called a cycle.
The union of all periodic points of a map g will be denoted by Per(g).

For T ⊂ R, we say that g : T → T is minimal, resp. transitive on T if for
each x ∈ T , resp. for some x ∈ T it holds ω(x, g) = T . The point with the
last property is called transitive. We say that g: T → T is topologically
mixing if for any open U, V ⊂ T there exists an N such that gn(U)∩V 6= ∅
for any n > N . A subset M of T is g-invariant if g(M) ⊂ M . By convX
we denote the (closed) convex hull of a set X ⊂ R.

For T ⊂ R compact and g : T → T continuous we define a map gT ∈
C(convT ) mapping the convex hull conv T into itself and such that gT | T =
g and gT | J is affine for any interval J ⊂ I such that J ∩ T = ∅. For an
interval I ⊂ R, a map g ∈ C(I) is piecewise monotone if there are some
l ∈ N and points min I = c0 < c1 < · · · < cl < cl+1 = max I such that g is
(non-strictly) monotone on each [ci, ci+1], i = 0, . . . , l.

Definition 2. We define T as the set of all pairs (T, g) such that T ⊂ R
is compact, g : T → T continuous and g is transitive on T .

Remark 3. It is well-known that for (T, g) ∈ T exactly one of the
following three possibilities is satisfied [4]: (i) T is finite and then (T, g) is
a cycle; (ii) T is a Cantor set; (iii) T is a union of finitely many disjoint
closed intervals. Notice that if for g ∈ C(T ) a point x ∈ T is recurrent then
(ω(x, g), g) ∈ T .

Let I be the set of all compact subintervals of R. In the sequel we use
the notation C(I) =

⋃
I∈I C(I). For two closed sets K, L ⊂ R we will

write K < L if max K < min L.

Definition 4. Assume there are sequences {K1
i }i∈N0 , {K2

i }i∈N0 such
that

(i) Kj
i is a point or closed interval,

(ii) either Kj
i(1) ∩Kj

i(2) = ∅ or Kj
i(1) = Kj

i(2) for i(1) 6= i(2).

We will say that the sequences {K1
i }i∈N0 , {K2

i }i∈N0 have the same order
if

K1
i(1) < K1

i(2) ⇐⇒ K2
i(1) < K2

i(2), i(1), i(2) ∈ N0. (1)

In particular, for f1, f2 ∈ C(I) and closed (possibly degenerate) intervals
J,K, the orbits orb(J, f1), orb(K, f2) have the same order if (1) is satisfied
for the sequences {K1

i = f i
1(J)}i∈N0 , {K2

i = f i
2(K)}i∈N0 .
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Definition 5. For the notion of topological entropy we use the Bowen’s
definition [7]. A set E ⊂ T is (n, ε)-separated (with respect to g) if, when-
ever x, y ∈ E, x 6= y then max

0≤i≤n−1
|gi(x)− gi(y)| > ε.

For a compact set K ⊂ T we denote s(n, ε,K) the largest cardinality of
any (n, ε)-separated subset of K. Put

ent(g,K) = lim
ε→0+

lim sup
n→∞

1
n

log s(n, ε,K)

and ent(g) = ent(g, T ). The quantity ent(g) is called the topological en-
tropy of g.

3. KNOWN NEEDED RESULTS

In the first lemma we recall known properties of dynamical systems given
by topologically mixing interval maps. These properties will be useful when
proving our results.

Lemma 6.

(i) Let g ∈ C([a, b]) and p ∈ Per(g). Then for T = orb(p, g) it holds
ent(gT ) ≤ ent(g).

(ii) Let (T, g) be a cycle of odd period greater than 1. Then the map
gT ∈ C(convT ) is topologically mixing.

(iii) Let g ∈ C([a, b]) be topologically mixing. The following is true.

(iii1) The map g is transitive and the set of all transitive points is
dense in [a, b].

(iii2) The set of all periodic points with odd period is dense in [a, b].

(iii3) Let η ∈ [a, b] be transitive and {p(n)} ⊂ [a, b] be a sequence of
periodic points, denote P (n) = orb(p(n), g). Then we have

lim
n→∞

p(n) = η ⇒ lim
n→∞

ent(gP (n)) = ent(g).

(iii4) For each n ∈ N, the map gn is topologically mixing, hence
there is no periodic interval of g different from [a, b].

Proof. See [1].

In order to study transitive pairs we need some method that will help us
to recognize that a fixed map f ∈ C(I) has such a pair of prescribed order.
The following lemma satisfies this requirement.
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Lemma 7. Let f ∈ C(I) and (T, g) ∈ T . Assume there is a sequence
{Ki}i∈N0 such that

(i) Ki ⊂ I is a point or closed interval,
(ii) either Ki(1) ∩Ki(2) = ∅ or Ki(1) = Ki(2) for i(1) 6= i(2),
(iii) f i(K0) = Ki and for some transitive point t ∈ T the orbits

orb(K0, f), orb(t, g) have the same order.

Then there is an f -recurrent point t∗ ∈ I such that the orbits orb(t∗, f),
orb(t, g) have the same order.

Proof. It is literally the same as the proof of Lemma 2.2 in [6].

For f ∈ C([a, b]) let A(f) be the set of those from points a, b which have
no preimages in (a, b).

Lemma 8. ([5]) If f ∈ C([a, b]) is topologically mixing then there are
the following possibilities for A = A(f): 1) A = ∅; 2) A = {a}, f(a) = a;
3) A = {b}, f(b) = b; 4) A = {a, b}, f(a) = a, f(b) = b; 5) A = {a, b},
f(a) = b, f(b) = a. Moreover, if J ⊂ [a, b] is a closed interval, J ∩ A = ∅,
then for any open U there exists n such that fm(U) ⊃ J for m > n. In
particular, if A = ∅ then for any open U there exists n such that fm(U) =
[a, b] for m > n.

Proposition 9. ([8]) Any continuous, transitive, piecewise monotone
map f ∈ C(I) is topologically conjugate to a piecewise linear map g ∈ C(I)
which has slope ±β (log β is the topological entropy of f) on each linear
piece.

The following lemma is well known. We use it in Appendix.

Lemma 10. ([3]) For f ∈ C([a, b]) let {Ik}m−1
k=0 be a sequence of intervals

satisfying f(Ik) ⊃ Ik+1(modm). There is a periodic point p ∈ [a, b] such that
fk(p) ∈ Ik for k = 0, . . . , m− 1 and fm(p) = p.

4. OUR LEMMAS

Definition 11. We say that f ∈ C([a, b]) has an increasing lap (α, ω) if
for points α, ω ∈ (a, b) it holds a < α < ω < b and f(α) = a, f(ω) = b. In
this case we sometimes shortly say that f has an increasing lap.

Remark 12. Note that by our definition a map f may not be increasing
on its increasing lap.

In what follows we will need the following six pairwise disjoint classes of
maps from C([a, b]): C1 = {f : f(a) = a, f(b) = b}, C2 = {f : f(a) =



22 J. BOBOK

a, f(b) ∈ (a, b)}, C3 = {f : f(b) = b, f(a) ∈ (a, b)}, C4 = {f : f(a) =
f(b) = a}, C5 = {f : f(a) = f(b) = b}, C6 = {f : f(a), f(b) ∈ (a, b)}.

Clearly, the set
⋃6

i=1 Ci is a proper subset of C([a, b]).

Lemma 13. Let f ∈ C([a, b]) be topologically mixing with A(f) = ∅. The
following is true.

(i) There exists an n such that fm has some increasing lap for each
m > n.

(ii) There is an m ∈ N such that fm ∈ ⋃6
i=1 Ci and fm has an increas-

ing lap.

Proof. (i) It directly follows from Lemma 8. Let us prove (ii). Using (i) of
this lemma we fix n0 ∈ N such that every fn, n > n0 has some increasing
lap. If fn(b) = b, resp. fn(a) = a for some n ∈ N then we can put
m = 2nn0. Really, fm belongs to C1 ∪ C3 ∪ C5, resp. C1 ∪ C2 ∪ C4 and
since m = 2nn0 > n0 by the previous fm has an increasing lap.

So, we have to check the case when {a, b} ∩ Per(f) = ∅. Then

#{n ∈ N: fn(a) = b} ≤ 1 & #{n ∈ N: fn(b) = a} ≤ 1,

hence fm ∈ C6 for sufficiently large m > n0.

Let g ∈ C([a, b]). In the sequel we use the notation

U(a, x) = {y ∈ [a, x]: g(y) ≥ y}, D(x, b) = {y ∈ [x, b]: g(y) ≤ y}.

Lemma 14. Let g ∈ C([a, b]) be topologically mixing with A(g) = ∅. The
following is true.

i) If a ∈ Fix(g) then for every positive ε and x ∈ (a, b] there is an
interval J ⊂ [a, a + ε] and an n ∈ N such that gn(J) is a neighbourhood of
x and

⋃n−1
i=0 gi(J) ⊂ U(a, x).

(ii) If b ∈ Fix(g) then for every positive ε and x ∈ [a, b) there is an
interval J ⊂ [b− ε, b] and an n ∈ N such that gn(J) is a neighbourhood of
x and

⋃n−1
i=0 gi(J) ⊂ D(x, b).

Proof. See Appendix.

Construction. Let f ∈ C([a, b]) be topologically mixing and η ∈ [a, b] be
a transitive point. By Lemma 6 there is a sequence {p(n)}n∈N of periodic
points of odd period such that for each n

p(n) ∈ (η − 1/n, η + 1/n). (2)



ON LIPSCHITZ EXTENSION OF INTERVAL MAPS 23

Put P (n) = orb(p(n), f). We know from Lemma 6(ii) that each map
fn = fP (n) ∈ C(convP (n)) is transitive. Using Proposition 9 we can
consider an increasing surjective map hn: convP (n) → [a, b] such that

gn = hn ◦ fn ◦ h−1
n , (3)

where gn ∈ C([a, b]) is a piecewise linear map with slope ±νn (log νn is the
topological entropy of fn) on each linear piece.

Let us suppose that the topological entropy ent (f) = log ν. It is known
- see Lemma 6(i) - that for each n it holds ent (gn) = log νn ≤ log ν. If
log ν ∈ R we obtain as a consequence that the sequence {gn}∞n=1 given
by (3) is equicontinuous and equibounded hence by Ascoli-Arzela Theorem
also relatively compact in the space C([a, b]) (equipped with the supremum
metric). We use the notation

L (f) =
⋂

m≥1

⋃
n>m

{gn}.

By its definition, the set L (f) is a closed subset of C([a, b]). If we denote
by Cν([a, b]) the set of all ν-Lipschitz maps from C([a, b]), then L (f) ⊂
Cν([a, b]).

In the next lemma we use the notation from the above construction.

Lemma 15. Let f ∈ C([a, b]) be topologically mixing, put hn(p(n)) =
q(n) for n ∈ N, fix g ∈ L (f). The following is true.

(i) There is a sequence {n(i)}i∈N and a θ ∈ [a, b] such that for each
j ∈ N

gj
n(i)

i−→ gj & q(n(i)) i−→ θ. (4)

(ii) If for θ ∈ [a, b] from (i) it holds θ /∈ Fix(g) then the orbits orb(η, f),
orb(θ, g) have the same order.

Proof. The property (i) follows directly from our Construction. Let us
prove (ii). Supposing θ /∈ Fix(g) we show that orb(θ, g) is not finite. In
order to show this fact let to the contrary #orb(θ, g) ∈ N. Then there are
r ∈ N0 and s ∈ N such that gr(θ) ∈ Per(g) and has a period s. Let r, s be
the least values with this property. We can write

orb(gr(θ), g) = {p0 < · · · < ps−1}.

Choose positive integers k, l greater than r such that fk(η) < η and
f l(η) > η. It is possible since η ∈ (a, b) is a transitive point of f . Then for
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each sufficiently large n we obtain from (2) and (3)

fk
n(p(n)) < p(n), f l

n(p(n)) > p(n) & gk
n(q(n)) < q(n), gl

n(q(n)) > q(n),

hence by (4) we get

gk(θ) ≤ θ & gl(θ) ≥ θ.

The last inequalities together with θ /∈ Fix(g) show that s > 1. Let
(σ(0), . . . , σ(s − 1)) be the unique permutation of numbers (0, . . . , s − 1)
satisfying

gr+σ(i)+sj(θ) = pi, (i, j) ∈ {0, . . . , s− 1} ×N0.

Then by definition of g we obtain that for each j(0), . . . , j(s − 1) ∈ N0 it
holds

fr+σ(0)+sj(0)(η) < · · · < fr+σ(s−1)+sj(s−1)(η)

and the sets

Ji = {fr+σ(i)+sj(η): j ∈ N0}, i ∈ {0, . . . , s− 1}

are periodic intervals (of period s > 1) of topologically mixing f - a con-
tradiction with Lemma 6(iii4). Thus, the set orb(θ, g) is not finite.

Now, it is again an easy consequence of our Construction that the orbits
orb(η, f) and orb(θ, g) have the same order.

Let p be a periodic point of a map f ∈ C([a, b]), put P = orb(p, f). We
denote by p+, resp. p− uniquely determined points from P defined by

f(p−) = min P & f(p+) = max P.

Definition 16. Let f ∈ C([a, b]) be topologically mixing. We say that
f is bordered by a triple (β, γ, η) ∈ (a, b)3 if β < γ and η is a transitive
point such that

∀ n ∃ p(n) ∈ Per(f) ∩ (η − 1/n, η + 1/n): p−(n), p+(n) ∈ (β, γ). (5)

If it is not important to emphasize the values β, γ ∈ (a, b) we will sometimes
write (·, ·, η) instead of (β, γ, η).

Lemma 17. Let f ∈ C([a, b]) with ent (f) = log ν ∈ R be bordered by a
triple (β, γ, η), let {p(n)}n∈N ⊂ Per(f) be a sequence given by (5), suppose
that fn, hn, gn are the same as in Construction, put hn(p(n)) = q(n) for
n ∈ N. Then

∃ k, l ∈ N ∃ n0 ∈ N ∀ n > n0: | gk
n(q(n))− gl

n(q(n)) | ≥ b− a

ν
. (6)
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Proof. Since η is transitive there exist positive integers k, l such that
fk(η) < β and f l(η) > γ. From (5) follows that an analogous statement is
true for fn and p(n) for n sufficiently large, i.e. for k, l and β, γ as above
we have

∃ n0 ∀ n > n0: fk
n(p(n)) < β & f l

n(p(n)) > γ.

Then using (5) again we can also write for each n > n0

fk
n(p(n)) < min{p+(n), p−(n)} & f l

n(p(n)) > max{p+(n), p−(n)}. (7)

The relation (3) in particular gives hn(p+(n)) = q+(n) and hn(p−(n)) =
q−(n). By virtue of (7) and (3) we get for each n > n0

gk
n(q(n)) < min{q+(n), q−(n)} & gl

n(q(n)) > max{q+(n), q−(n)}. (8)

But by the previous gn(q+(n)) = b and gn(q−(n)) = a. Since gn is a
νn-Lipschitz map we can see that

| q+(n)− q−(n) | ≥ b− a

νn
≥ b− a

ν
. (9)

Summarizing, from (8),(9) we obtain (6). This proves the lemma.

Lemma 18. Let f ∈ C([a, b]) be topologically mixing and ent (f) ∈ R.
Suppose that for some m ∈ N the map fm is bordered by a triple (·, ·, η).
The following is true.

(i) The point η ∈ (a, b) is transitive for f .
(ii) Using η in Construction, there is a map g ∈ L (f) and a g-recurrent

point θ ∈ [a, b] such that the orbits orb(η, f), orb(θ, g) have the same order.

Proof. The property (i) is clear.
We show (ii). Let f̃ = fm be bordered by (β, γ, η). Since the entropy

of f is finite we can write ent(f̃) = log ν ∈ R. Let {p(n)}n∈N ⊂ Per(f̃) =
Per(f) be a sequence given for f̃ by (5). Apply Construction for f , η,
{p(n)}, resp. for f̃ , η, {p(n)} and denote maps from this construction
fn, hn, gn, resp. f̃n, h̃n, g̃n. Using Proposition 9 we get hn = h̃n and
gm

n = g̃n for each n and we can put hn(p(n)) = h̃n(p(n)) = q(n), n ∈ N.
Fix g̃ ∈ L (f̃). Obviously there are an increasing sequence {n(i)}i∈N

and a θ ∈ [a, b] such that for each j ∈ N

g̃j
n(i)

i−→ g̃j & q(n(i)) i−→ θ; (10)
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without loss of generality we can assume (taking a subsequence of {n(i)}
if necessary) that also gj

n(i)

i→ gj for some g ∈ L (f) (obviously gm = g̃)
and each j ∈ N.

We show that θ /∈ Fix(g̃). Suppose to the contrary the relation θ ∈ Fix(g̃)
and fix an ε positive for which 4ε < b−a

ν . For the numbers k, l given in
(6), by (10) there is a positive integer i1 such that for each i > i1 it holds
(g̃k(θ) = θ, g̃l(θ) = θ)

|g̃k
n(i)(q(n(i)))− g̃l

n(i)(q(n(i))) | ≤ | g̃k
n(i)(q(n(i)))− g̃k(q(n(i))) | +

+ | g̃k(q(n(i)))− g̃k(θ) | + | g̃l(θ)− g̃l(q(n(i))) | +

+ | g̃l(q(n(i)))− g̃l
n(i)(q(n(i))) | ≤ 4ε <

b− a

ν
,

what is impossible by (6). We have shown that θ /∈ Fix(g̃), hence we
get θ /∈ Fix(g). Now, it follows from Lemma 15 that the orbits orb(η, f),
orb(θ, g) have the same order. Using Lemma 7 we can suppose that the
point θ is g-recurrent. This proves the lemma.

Lemma 19. If f ∈ C([a, b]) is topologically mixing and satisfying A(f) =
∅ then there is an m ∈ N such that fm is bordered by some triple (β, γ, η).

Proof. See Appendix.

5. MAIN RESULTS

Our goal in this section is to use lemmas developed in the previous section
to prove the main results.

Let J,K be two compact subintervals of R; we denote by H(J,K), resp.
H(J) the set of all continuous, non-decreasing maps mapping J onto K,
resp J .

Definition 20. A map g ∈ C(J) is called the (interval) extension of
f ∈ C(K) if there is a map h ∈ H(J,K) such that

f ◦ h = h ◦ g on J. (11)

We say that g satisfying (11) is a ν-Lipschitz extension if g ∈ Cν(J).

For h ∈ H(J,K) we put

supp(h) = {x ∈ J : h(L) is not a point for any open interval L ⊂ J

with x ∈ L}.
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Theorem 21. Let f ∈ C([a, b]) be topologically mixing and satisfying
ent(f) = log ν ∈ R, A(f) = ∅. There exists a ν-Lipschitz extension of f .

Proof. By Lemma 19 there is an m ∈ N such that fm is bordered by
some triple (β, γ, η) and we can use Lemma 18. By that lemma there is
a map g̃ ∈ L(f) and a g̃-recurrent point θ ∈ [a, b] such that the orbits
orb(η, f), orb(θ, g̃) have the same order.

Put T = orb(θ, g̃) = ω(θ, g̃) and denote g = g̃T ∈ C(convT ). By the
previous we have g ∈ Cν(convT ).

Notice that since the orbits orb(η, f) and orb(θ, g) have the same order
and T = ω(θ, g), resp. [a, b] = ω(η, f), we can consider the map h ∈
H(conv T, [a, b]) fulfilling the conditions supp(h) = T , h(θ) = η and (see
Remark 3)

fm(η) = fm(h(θ)) = h(gm(θ)) for each m ∈ N0.

Extending the last equality to the whole interval conv T , we obtain f ◦h =
h ◦ g on convT . This proves the theorem.

6. APENDIX - THE PROOFS OF TECHNICAL RESULTS

Definition 22. Let g ∈ C([a, b]). We say that a point x ∈ (a, b) is regular
if for every neighbourhood U(x) of x the set g(U(x)) is a neighbourhood
of g(x).

For g ∈ C([a, b]) we use notation

U(a, x) = {y ∈ [a, x]: g(y) ≥ y}, D(x, b) = {y ∈ [x, b]: g(y) ≤ y}.

Proof of Lemma 14. We show the property (i). The proof of (ii) is
analogous.

Fix ε > 0 and first take x ∈ (a, a+ε]. Since g is topologically mixing the
set g([a, x]) is not a subset of [a, x]. From g(a) = a we can see that there
has to be a regular point z ∈ (a, x) for which g(z) = x. Clearly, if a closed
interval J is a sufficiently small neighbourhood of z, J and n = 1 satisfy
our conclusion for x. Thus, if we put

A = {x ∈ (a, b]: conclusion does not hold for x},

then A ⊂ (a + ε, b]. Suppose that A 6= ∅. Obviously the value x1 = inf A
is well defined and a + ε ≤ x1.
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Similarly as above, the interval [a, x1] is not g-invariant. Together with
the equality g(a) = a we obtain that for some regular point z1 ∈ (a, x1)
it holds g(z1) = x1. But z1 < x1 hence for some closed interval J ⊂
[a, a + ε] and a k ∈ N the set gk(J) is a neighbourhood of regular z1 and⋃k−1

i=0 gi(J) ⊂ U(a, z1). Then for sufficiently small J1 ⊂ J for which the set
gk(J1) is a neighbourhood of z1 and gk(J1) ⊂ U(a, x1) we obtain that J1

and n = k + 1 have the required property for x1, hence also for all points
from some right neighbourhood of x1 - a contradiciton. This proves the
lemma.

Proof of Lemma 19. By virtue of Lemma 6(iii4) and Lemma 13 we obtain
that there is an m ∈ N such that g = fm ∈ ⋃6

i=1 Ci, g is topologically
mixing and it has an increasing lap (α, ω). Put

β =
{

α , g(a) = a
minFix(g) , g(a) > a

γ =
{

ω , g(b) = b
maxFix(g) , g(b) < b

(12)

Clearly, a < β < γ < b. Denote p(α) = minFix (g) ∩ (α, b] and fix a
transitive point η ∈ (α, p(α)). It is possible since by Lemma 6(iii1) the set
of all transitive points is dense in [a, b].

Choose a neighbourhood U(η) ⊂ (α, p(α)) of η arbitrarily. We need to
show that there is a periodic point p ∈ U(η) such that p−, p+ ∈ (β, γ). We
will do it for g ∈ C1 ∪ C6. The cases when g ∈ C2 ∪ C3 ∪ C4 ∪ C5 are
analogous and we leave them to the reader. Since g is topologically mixing
and A(g) = ∅, from Lemma 8 we know that for every interval J ⊂ [a, b] it
holds gk(J) = [a, b] for some k ∈ N. We use this fact liberally throughout
the proof.

I. g ∈ C6. Choose an ε > 0 to satisfy a + ε < β, γ < b − ε and
put K1 = [a, a + ε] and K2 = [b − ε, b]. There exist positive integers
n(0), n(1), n(2) and a closed interval K0 ⊂ U(η) such that gn(0)(K0) ⊂ K1,
gn(0)+n(1)(K0) ⊂ K2 and gn(0)+n(1)+n(2)(K0) ⊃ K0. By Lemma 10 there is
a periodic point p ∈ K0 such that gi(p) ∈ gi(K0), i ∈ {0, 1, . . . , n(0)+n(1)+
n(2) − 1}. Since for g ∈ C6 from (12) follows min{g(x): x ∈ [a, β]} ≥ β
and max{g(x): x ∈ [γ, b]} ≤ γ we get p−, p+ ∈ (β, γ). The reader can see
that the point p can be chosen to have an odd period.

II. g ∈ C1. From (12) we see that β = α and γ = ω.
(A) There is a sufficiently small ε > 0, a closed interval K0 ⊂ U(η) and

an n(0) ∈ N satisfying
(B) min{g(x): x ∈ [p(α) − ε, p(α)]} > a, gn(0)(K0) = [p(α) − ε, p(α)].

Since for g ∈ C1 it holds a, b ∈ Fix (g) the properties (B) imply that

a < m = min{g(x): x ∈
n(0)⋃

i=0

gi(K0)} < M = max{g(x): x ∈
n(0)⋃

i=0

gi(K0)} < b.



ON LIPSCHITZ EXTENSION OF INTERVAL MAPS 29

Thus, we can consider a positive δ for which a + δ < m and M < b − δ.
From (12) we have g(β) = a and g(γ) = b.

Obviously (C) there is a closed interval K1 ⊂ [p(α) − ε, p(α)] and an
n(1) ∈ N such that

gn(1)(K1) = [a, a + δ] &
n(1)−1⋃

i=0

gi(K1) ⊂ [β, p(α)].

Now, using Lemma 14 (g(a) = a)
(D) we can consider a closed interval K2 ⊂ [a, a + δ] and an n(2) ∈ N

such that gn(2)−1(K2) is a left neighbourhood of γ, gn(2)(K2) ⊂ [b− δ, b] is
a neighbourhood of b and

n(2)−2⋃

i=0

gi(K2) ⊂ U(a, γ).

Using Lemma 14 again (g(b) = b)
(E) we can consider a closed interval K3 ⊂ gn(2)(K2) and an n(3) ∈ N

such that gn(3)(K3) is a neighbourhood of p(α) and

n(3)−1⋃

i=0

gi(K3) ⊂ D(p(α), b).

Finally,
(F) for some closed interval K4 ⊂ gn(3)(K3) and an n(4) ∈ N we obtain

gn(4)(K4) = K0.
Summarizing (A-F), for a closed interval K ⊂ K0 it holds gn(0)+···+n(4)(K) =

K0, hence by Lemma 10 there is a periodic point p ∈ K ⊂ U(η). By
our construction, p− ∈ gn(0)+n(1)−1(K) ⊂ [β, p(α)] (see (C)) and p+ ∈
gn(0)+n(1)+n(2)−1(K) ⊂ [p(α), γ] (see (D)). Similarly as above the point p
can be chosen to have an odd period. This proves this part of the lemma.
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