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Let Tn be the n-torus. We show that strengthened versions of the Cr-
closing lemma (r ≥ 1) take place for several classes of dynamical systems on
tori; namely, 1) for Herman actions of the group Zk on T1; 2) for foliations
without compact leaves on T3; 3) for diffeomorphisms of T1 with wandering
chain recurrent points; 4) for flows on T2 with wandering chain recurrent
trajectories and without fixed points. We also prove a version of the Cr-
closing lemma for generalized interval exchange transformations on T1 under
the assumption that a nontrivially recurrent point has symbolic expansions
sufficiently large, and as a corollary we get a version of the Cr Closing lemma
under similar assumption in terms of symbolic coding for Cr vector fields with
finitely many singularities of saddle type on an orientable surface of genus≥ 2.
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1. INTRODUCTION

Let M be a manifold and χr(M) the space of Cr-smooth vector fields
on M with the Cr-topology (r ≥ 1). Suppose that f ∈ χr(M) has a
nontrivially recurrent point x ∈ M . The following assertion is called the
Cr-closing lemma for f : there exists g ∈ χr(M) arbitrarily close to f in the
Cr-topology such that x is a periodic point for g. If one requires every point
of M to be periodic point of g one usually calls the corresponding assertion
the strengthened Cr-closing lemma. It is easy to give similar definitions for
discrete dynamical systems and for foliations on M as well.

In 1939 A. G. Maier [15] proved the Cr-closing lemma (r ≥ 1) for ori-
entation preserving diffeomorphisms of the circle T1 (this result was ob-
tained independently in [21]; see also a modern exposition in [19], ch.1).
M. V. Jakobson [10] proved C1-closing lemma for C1-endomorphisms of
the circle and also of the interval. In [27], Lai-Sang Young proved the Cr-
closing lemma (2 ≤ r ≤ ∞) for Cr maps of the interval. The C1-closing
lemma and a general density theorem for diffeomorphisms of compact man-
ifolds was proved by C. Pugh [22], [23] (see also [24]).

It is often of use (in particular, in the perturbation theory) to have ver-
sions of the closing lemma under weaker conditions on the point x ∈ M
than the condition of nontrivial recurrency. For example, C.Pugh [23]
proved the C1-closing lemma for nonwandering points on compact mani-
folds; M.Peixoto [21] proved Cr-closing lemma (r ≥ 1) for prolongationally
recurrent points of vector fields on the plane with singularities which are
either semihyperbolic or satisfy the shadowing property.

In the present paper we prove the strengthened Cr-closing lemma (r ≥ 1)
for wandering chain recurrent points of diffeomorphisms of the circle T1

(denoted also by S1) and for wandering chain recurrent points of flows
without fixed points on T2, see Section 2. In Section 3, we consider the so
called Herman actions (or H-actions) of Zk on S1 and prove the strength-
ened C∞-closing lemma for them. This result is then used for foliations
without compact leaves on T3.

In Section 4, we give sufficient conditions for the Closing lemma for
piecewise diffeomorphisms of the circle (i.e., for generalized interval ex-
change transformations) in terms of the so called p-expansions, see pre-
cise definition in Section 4. This result is closely related to the result of
C. Gutierrez [8], which states that the Cr-closing lemma (r ≥ 1) holds
true for torus flows with finitely many fixed points provided that Poincaré
rotation number of the flow is of nonconstant type (the latter means that
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if rot(f t) = [a0, a1, . . . , an, . . .] is the continued fraction of the Poincaré
rotation number, then limn→∞an = +∞). By using symbolic representa-
tions for orbits of piecewise diffeomorphism f : S1 → S1, we define for any
nontrivially recurrent point of f , the so called left and right p-expansions,
which characterize a kind of ”periodicity” of the orbit; these p-expansions
form two sequences of natural numbers which are constructed in accor-
dance with successive repetitions of blocks in the symbolic representation
of x. In a sense, p-expansions can be regarded as a generalization of the
continued fractions of Poincaré rotation numbers. Theorem 5 states that
if the p-expansions of a given recurrent point are sufficiently large (more
precisely, if they contain infinitely many numbers bigger than 2), then the
Cr-closing lemma (r ≥ 1) holds for this point. As applications, we get
sufficient conditions for the Cr-closing lemma for vector fields with finitely
many singularities of saddle type on an orientable surface of genus≥ 2 (see
therems 6-8 below). These sufficient conditions are in terms of the Koebe-
Morse coding and the Bowen-Series expansions of geodesics corresponding
to nontrivially recurrent trajectories (recall that every nontrivially recur-
rent trajectory corresponds to a unique geodesic with the same asymptotic
directions). These results can be regarded as an extension of Gutierrez’s
theorem [8] to surfaces of genus≥ 2 (for further extensions see [3]).

2. THE STRENGTHENED CLOSING LEMMA FOR
WANDERING CHAIN RECURRENT POINTS AND

TRAJECTORIES

Let f : M → M be a homeomorphism of the manifold M with metric d.
A point x ∈ M is called chain recurrent if for any ε > 0 there exist points
x = x0, x1, . . . , xn = x such that d(f(xi), xi+1) < ε, i = 0, . . . , n − 1. A
point x ∈ M is a wandering point of f if there is a neighborhood U of x
such that fn(U) ∩ U = ∅ for all n 6= 0.

Let Diffr(S1) be the space of Cr-diffeomorphisms of the circle endowed
with the standard metric dr which induces the Cr-topology. In the follow-
ing theorem we denote by Rα the rigid rotation of the circle with rotation
number α.

Theorem 1. Suppose f ∈ Diffr(S1), r ≥ 1, has a wandering chain
recurrent point. Then for any ε > 0 there is g ∈ Diffr(S1) such that
dr(f, g) < ε and all orbits of g are compact (and thus periodic).

Proof. Since any orientation reversing homeomorphism of the circle
has no wandering chain recurrent points, it follows that f is orientation
preserving. Thus for f , the rotation number rot(f) is well defined. If rot(f)
is irrational and r > 1 then due to the well known Denjoy’s Theorem [6],
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f cannot have wandering points. Therefore we need to consider two cases
as follows:

1. rot(f) is irrational and r = 1, and
2. rot(f) is rational and r ≥ 1

In the case 1) it follows from the Herman Theorem on instability of ir-
rational rotation numbers ( see proposition 4.1.1 of [11]) that there ex-
ists an analytical diffeomorphism φ : S1 → S1 such that dr(f, φ) < ε/2,
rot(φ) ∈ A, where A ⊂ R is the set of full Lebesgue measure (the num-
bers α ∈ A satisfy the Diophantine condition on approximation by rational
numbers: ∣∣∣∣α−

p

q

∣∣∣∣ >
K

q2+δ

for all rationals p
q , where K and δ are some positive constants ) and more-

over, there exists an analitical diffeomorphism h which conjugates φ to
Rrot(φ), i.e., φ = h−1Rαh, where α = rot(φ). Take a number µ such that
dr(h−1Rαh, h−1Rµh) < ε/2. So we have dr(f, g) < ε. If we take the num-
ber µ to be rational, then all orbits of g are compact. So the case 1) is
completed.

In the case 2) we have rot(f) = p/q for some integers p, q. Therefore fq

has fixed points. Consider the lift f
q

for fq such that f
q ∈ [0; 1). Since

f has a wandering chain recurrent point, it follows that either f
q
(x) ≥ x

or f
q
(x) ≤ x. We assume for definiteness that f

q
(x) ≥ x for all x ∈ R.

Consider the family fλ(x) = f(x) + λ with λ > 0. One has f
q

λ(x) ≥
f

q
(x) + λ ≥ x + λ. Therefore rot(fλ) > rot(f). Because of continuity

in λ of the rotation numbers, there exists λ0 > 0 such that rot(fλ0) ∈ A
and dr(f, fλ0) < ε/3. To finish the proof it remains now to use the same
arguments as in the end of the proof of the case 1).

We now consider an analog of the previous result for flows on the torus
T2. Let f t be a flow on the manifold M . A point x ∈ M is a chain
recurrent point of f t if for any ε > 0 and T > 0 there are finite sequences
of points x = x0, x1, . . . , xn = x and numbers t0, . . . , tn−1 such that ti > T
and d(f ti(xi), xi+1) < ε for all i = 0, . . . , n− 1. The set of chain recurrent
points of f t is a closed invariant set. Let W (f t) be the set of wandering
points of f t, and χr(T2), r ≥ 1, be the space of Cr-flows on the torus T2

with the Cr-metric dr.

Theorem 2. Let f t be a Cr flow without fixed points on T2 and assume
f t has a chain recurrent wandering point. Then for any ε > 0 there is a Cr

flow gt on T2 such that dr(f t, gt) < ε and all trajectories of gt are closed.

Proof. Using the well known result (which follows from the Denjoy
Theorem) that Cr-flows on T2 without fixed points have no wandering
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points provided r > 1 and rot(f t) irrational, it remains to consider two
cases:

1. f t has no closed trajectories and r = 1,
2. f t has a closed trajectory and r ≥ 1

In the case 1) the flow f t has a closed transversal, say C, and f t induces
the forward Poincaré map p : C → C, which is Cr-smooth. Since f t has no
closed trajectories, the map p has irrational rotation number. Due to Theo-
rem 1, the diffeomorphism p can be approximated by a Cr-diffeomorphism
with all orbits closed. This implies the result in the case 1).

Now we divide the case 2) into two subcases: 2a) f t has a global transver-
sal circle C; and 2b) f t has no global transversal circles.

In subcase 2a), the forward Poincaré map p : C ∈ C has rational rotation
number and p satisfies the conditions of Theorem 1. Therefore this subcase
is treated similarly to the case 1).

In subcase 2b), consider the set Per(f t), the union of all periodic tra-
jectories of f t. Since f t has no fixed points, Per(f t) is compact. Hence
there is a finite collection Σ1, . . . , Σk of transversal segments such that
every closed trajectory intersects exactly one transversal segment Σi and
there are forward Poincaré maps fi : Σi → Σi, (i = 1, . . . , k). Choose a
parametrization xi : R → Σi for each 1 ≤ i ≤ k. Since f t has wander-
ing chain recurrent trajectories, the functions fi(xi)−xi do not reverse the
sign. So there exist disjoint closed annuli U1, . . . , Uk such that the following
properties hold for each i = 1, . . . , k:

1. the boundary ∂Ui is the union of two transversal circles;
2. Per(f t) ⊂ ⋃k

i=1 Ui;
3. the vector field of the flow f t is directed inwards (resp. outwards) with

respect to Ui on one of the two transversal (resp. on the other transversal
boundary circle) .

Since the functions fi(xi)−xi do not change the sign, there is an arbitrarily
small (in the Cr-topology) perturbation of the vector field of f t in the
domain U :=

⋃k
i=1(intUi) (without any change outside U) such that the

resulting flow gt has no fixed points nor closed trajectories homotopic to
the closed trajectories of f t. Hence the flow gt has a global transversal
circle (any boundary circle of ∂Ui can be chosen for this). So subcase 2b)
reduces to subcase 2a).

3. THE STRENGTHENED CLOSING LEMMA FOR SOME
SMOOTH ACTIONS AND FOLIATIONS

Recall that a group homomorphism ρ : Zk → Diff(S1) is a Cr-action
of Zk on S1 if the evaluation map (γ, x) := ρ(γ)(x), x ∈ S1, is Cr-
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smooth (r ≥ 0) for each γ ∈ Zk. The space Gr(Zk, S1) of such actions
is equipped with the standard Cr-metric for finite r: a sequence ρn of
Cr-actions converge to ρ0 in Gr(Zk, S1) if the sequence ρn(γ) converge to
ρ0(γ) in Diffr(S1) for any γ ∈ Zk.

A diffeomorphism f ∈ Diff∞(S1) is said to be an H-diffeomorphism
if it is C∞-conjugate to rigid rotation with irrational rotation number. If
the rotation number of a C∞-diffeomorphism f satisfy the Diophantine
condition as in section 2, than f is an H-diffeomorphism (see for example,
Theorem 1.2 [26]). The action ρ ∈ G∞(Zk, S1) is called an H-action if
there is γ ∈ Zk such that ρ(γ) is an H-diffeomorphism.

Theorem 3. Let ρ ∈ G∞(Zk, S1) be an H-action. Then for any ε > 0
and any finite r ∈ N there is ρc ∈ G∞(Zk, S1) ε-close to ρ (in the space
Gr(Zk, S1)) such that all orbits of ρc are compact.

Proof. By the definition of H-action there is a diffeomorphism ρ(γ0),
γ0 ∈ Zk, with irrational rotation number. Therefore ρ(γ0) is conjugate to
a transitive rotation, i.e., there is a homeomorphism h : S1 → S1 such that
h−1 ◦ ρ(γ0) ◦ h is a rigid rotation. It is well known that the centralizer of
transitive rigid rotations consists of rotations. Since all diffeomorphisms
ρ(γ),γ ∈ Zk, are mutually commutative it follows that every ρ(γ) which is
not the identity homeomorphism has no fixed points. Due to [9] (Theorem
2.1, see also section II.1 in [11]), h−1 ◦ ρ(γ) ◦ h is a rigid rotation for every
γ ∈ Zk. By the definition of H-action we may assume that h is a C∞-
diffeomorphism.

Since Zk is finitely generated and the action ρh : γ → h−1 ◦ ρ(γ) ◦h, γ ∈
Zk, consists of rigid rotations, there is an action ρ′ ∈ G∞(Zk, S1) arbitrarily
close to ρh in the space Gr(Zk, S1) such that all orbits of ρ′ are compact.
Because ρ′ is arbitrarily close to ρh and h is a C∞-diffeomorphism, the
action ρc = h ◦ ρ′ ◦ h−1 is arbitrarily close to ρ in the Cr-topology. It is
easy to see that all orbits of ρc are compact.

We now apply the previous result for foliations on T3. For codimension
one foliations without holonomy on T3, a topological invariant, the so
called rotation functional, was introduced by H.Rosenberg and R.Roussarie.
The rotation functional, which is denoted as a pair of real numbers (λ, µ),
describes the foliation as follows. If the numbers λ, µ are rational then all
leaves of the foliation are compact (being 2-dimensional tori); if at least
one of λ, µ is irrational and λ, µ are dependent over the field of rational
numbers Q then all leaves are annuli; finally, if λ, µ are independent over
Q, both λ and µ being irrational, then all leaves are 2-planes.

It is well known that if a foliation on T3 has no compact leaves then it
is a foliation without holonomy. As a consequence one gets that a foliation
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on T3 without compact leaves has the rotation functional (λ, µ) with at
least one of λ, µ irrational.

Theorem 4. Let F be a C∞-foliation without compact leaves on T3.
Assume that at least one of the two numbers of the rotation functional of
F satisfies the Diophantine condition on approximation by rationals. Then
for any r ∈ N there exists a codimension one foliation Fc arbitrarily close
to F in the Cr-topology such that all leaves of Fc are compact (and hence
being 2-dimensional tori).

Proof. Since the foliation F has a noncompact leaf, there is a closed
simple transversal T0 of F . As F is a foliation without holonomy, the
transversal T0 is nonhomotopic to zero. Let π : R3 → T3 be a universal
covering. Since T0 is nonhomotopic to zero then the full preimage π−1(T0)
is a family of pairwise disjoint nonclosed curves Ti, i ∈ N.

Let F be a covering foliation for F . Then every Ti is a transversal curve
for the foliation F . Moreover, since F is the foliation without holonomy
it follows that any leaf of F intersects every curve Ti, i.e., Ti, i ∈ N, is a
global section of the foliation F (see [9]). As a consequence we have that the
foliation F induces the C∞-action ρ ∈ G∞(Z2, S1). Since at least one of the
two numbers of the rotation functional satisfies the Diophantine condition,
it follows that ρ is an H-action. Therefore there is a C∞-diffeomorphism
h : S1 → S1 which conjugates ρ to the action consisting of rigid rotations
of S1. The diffeomorphism h can be extended to the C∞-diffeomorphism
φ : T3 → T3 which maps F to the linear foliation F1. It is easy to see
that there exists a codimension one C∞-foliation F2 arbitrarily close to F1

in the Cr-topology such that all leaves of F2 are 2-dimensional tori. Then
Fc = φ−1(F2) is the desired foliation.

Remark. Theorem 4 can be generalized for codimension one foliations
which are defined by the Pfaff 1-forms dxn+1 =

∑n
i=1 Pi(x1, . . . xn+1)dxi

on Tn+1, n ≥ 3.

4. CLOSING LEMMA FOR PIECEWISE
DIFFEOMORPHISMS OF THE CIRCLE

In this section we prove a version of the Cr-closing lemma for piecewise
diffeomorphisms of the circle (generalized interval exchange transforma-
tions) under the assumption that symbolic expansions of recurrent points
are sufficiently large. Then we apply this result to Cr vector fields with
finitely many singularities of saddle type on surfaces. To state the result
we need to give some preliminaries.

Let π : R → S1 = R/Z be the natural projection. Fix an integer k ≥ 2
and let {ai}k

i=1, {bi}k
i=1 be two sets of points on S1, where the points of
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each set are cyclically denoted. A one-to-one map f : S1 − {ai}k
i=1 →

S1 −{bi}k
i=1 will be called a Cr piecewise diffeomorphism if the restriction

of f to each interval Ii = (ai, ai+1) is a Cr-diffeomorphism to its image,
r ≥ 0, i = 1, . . . , k (where ak+1 = a1). Throughout this section we assume
that {ai}k

i=1 are the points of discontinuity of f . The set of all Cr piecewise
diffeomorphisms with k points of discontinuity will be denoted by Mr(k).

Consider a map f ∈ Mr(k). Each restriction f |Ii (i = 1, . . . , k) can be
easily extended by continuity to the semiclosed interval [ai, ai+1). Denote
by fl : S1 → S1 the resulting map, the left extension of f . Obviously, if f
is increasing for all Ii (or decreasing for all Ii) then fl is also one-to-one.
(In particular, if f |Ii is linear with slope +1 for all Ii, then fl becomes the
usual interval exchange transformation.) In similar way, one can define the
map fr (the right extension of f). If both fl and fr are Cr maps on the
disjoint union of the corresponding semiclosed intervals, then we will write
f ∈Mr+0(k).

Let us define the Cr-topology on Mr+0(k). For f ∈ Mr+0(k) with
points of discontinuity {a1, . . . , ak}, denote by Ii(f) the closed interval
[ai, ai+1], i = 1, . . . , k. Given ε > 0, we define the ε-neighborhood Uε(f)
of f with respect to the Cr-topology on Mr+0(k) as follows: a map g ∈
Mr+0(k) belongs to Uε(f) of f if there is an orientation preserving Cr-
diffeomorphism h : S1 → S1 such that h is ε-close to the identity in the
Cr-topology, h(Ii(f)) = Ii(g), i = 1, . . . , k, and g ◦ h is ε-close to f in the
Cr-topology on each Ii(f).

We define now the symbolic model for maps in Mr(k). Let f ∈ Mr(k)
with the points ai, bi and the intervals Ii as before, and let J be the
set consisting of k symbols J1, . . . , Jk. We put A = {a1, . . . , ak}, B =
{b1, . . . , bk} and A∞ =

⋃∞
i=0 f−i(A). Then for any x /∈ A∞, its forward

f -orbit is well defined and one associates the itinerary of x as follows:
if (x) = (i0(x), . . . , in(x), . . .), where in(x) = Ji if fn(x) ∈ Ii. Further
we put B∞ =

⋃∞
i=0 f i(B \ A∞). Then for any x /∈ B∞, its backward f -

orbit is well defined. So for any x /∈ A∞
⋃

B∞ def= D∞, the full f -orbit
O(x) =

⋃+∞
−∞ fn(x) of the point x is well defined. (It is easy to see that D

is at most countable).
A point x /∈ A∞ (resp. B∞) is called ω-reccurent (resp. α-recurrent) if it

is contained in its ω-limit set (resp. α-limit set). A point is called recurrent
if it is both ω- and α-recurrent. A recurrent point is called nontrivial if it is
neither fixed nor periodic point. It is clear that if x is recurrent then every
point of O(x) is recurrent as well. Therefore we may speak of recurrent
orbits.

Suppose x ∈ Iν = (aν , aν+1) is a nontrivial recurrent point. Let q1(r)
(the letter r being for ”right”) be the minimal positive integer for which
fq1(r)(x) ∈ (x, aν+1), or else q1(r) = ∞ (i.e., q1(r) = ∞ when f i(x) /∈
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(x, aν+1) for all i > 0). Now we define by induction: if qn−1 6= ∞ then
qn(r) is the minimal positive integer for which fqn(r)(x) ∈ (x, fqn−1(r)(x)),
or else qn = ∞. In the same way, to describe approaching of the orbit of
x from the left, one can define the integers qn(l), starting with the number
q1(l), which is the minimal positive integer with fq1(l)(x) ∈ (aν , x).

Given a positive integer n consider the finite block

Br
n =< i0(x), . . . , iqn(r)−1(x) >

of the itinerary if (x). Let rn ≥ 0 be the maximal number of successive
repetitions of Br

n in if (x) starting with iqn(r)(x) (we suppose that rn <
∞, otherwise the situation is trivial). Formally, this means that ik(x) =
ik+jqn(r)(x) for 0 ≤ j ≤ rn, 0 ≤ k ≤ qn(r)−1 and rn is the maximal number
for which these equalities hold. The sequence R(x) = {r1(x), . . . , rn(x), . . .}
is called the right p-expansion of the point x. If one replace qn(r) by qn(l)
then one gets L(x), the left p-expansion of x.

We now are in position to state the main result of this section.

Theorem 5. Suppose f ∈ Mr+0(k), r ≥ 1, is a piecewise diffeomor-
phism of the circle S1 and f is increasing on all monotonicity intervals. Let
x ∈ S1 be a nontrivially recurrent point and L(x) = {li}∞1 , R(x) = {ri}∞1
the left and right p-expansions of x respectively. If

lim sup
n→∞

ln ≥ 3 and lim sup
n→∞

rn ≥ 3,

then for any neighborhood U(f) of f in the Cr-topology there exists g ∈
Mr+0(k) ∩ U(f) such that x is a periodic point for g.

Proof. Let x ∈ Iν = (aν , aν+1). Since x is nontrivially recurrent, we
see that at least one of the intervals (aν , x), (x, aν+1) contains infinitely
many points of O(x) arbitrarily close to x. To be definite, assume that
it is the interval (x, aν+1). First of all, remark that if there is an interval
(x, c) ⊂ (x, aν+1) such that the restriction fn|(x, c) is a homeomorphism
for all n ∈ N, then the Theorem holds true without any assumptions on
p-expansions of x . Indeed, in this case the proof is similar to that for
diffeomorphisms (see [21], [19]). So we may assume that for any interval
(x, c) ⊂ (x, aν+1) there is n0 ∈ N such that fn0 |(x, c) is not a homeomor-
phism (i.e., fn0−1(x, c) contains at least one point of discontinuity). By
our assumption, the itinerary if (x) contains infinitely many blocks of the
form Br

n . . . Br
n︸ ︷︷ ︸

rn times

, where

Br
n =< i0(x), . . . , iqn(r)−1(x) >, i0(x) = iqn(r)(x) = Jν .
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Hence f jqn(x) ∈ (x, aν+1) for 0 ≤ j ≤ rn. By passing to a subsequence if
necessary, one may assume that rn ≥ 3.

Later on, essential parts of the proof we indicate as steps.
Step 1. The restriction of fqn on each interval

[f (j−1)qn(x), f jqn(x)], 1 ≤ j ≤ rn − 1,

is a homeomorphism

[f (j−1)qn(x), f jqn(x)] → [f jqn(x), f (j+1)qn(x)].

Moreover, the restriction of f to each interval

[fm+(j−1)qn(x), fm+jqn(x)], 0 ≤ m ≤ qn

is a homeomorphism for 1 ≤ j ≤ rn − 2.
Proof of step 1. By assumption, the points fm(x), fm+qn(x) belong

to the same interval of continuity of f for each 0 ≤ m ≤ qn. Hence
every interval [fm(x), fm+qn(x)] contains no points of discontinuity and
the restrictions

f
∣∣ [fm(x), fm+qn(x)] : [fm(x), fm+qn(x)] → [fm+1(x), fm+1+qn(x)],

0 ≤ m ≤ qn−1, are homeomorphisms. As a consequence, we have that the
restriction

fqn
∣∣ [x, fqn(x)] : [x, fqn(x)] → [fqn(x), f2qn(x)]

is a homeomorphism. By the same arguments, one can prove that the
restriction

fqn
∣∣ [fm+(j−1)qn(x), fm+jqn(x)] :

[fm+(j−1)qn(x), fm+jqn(x)] → [fm+jqn(x), fm+(j+1)qn(x)]

is a homeomorphism for every 1 ≤ j ≤ rn − 1. This completes the proof of
step 1.

Step 2. The restriction of fqn to the interval [x, f (rn−1)qn(x)] is a home-
omorphism

[x, f (rn−1)qn(x)] → [fqn(x), frnqn(x)].

Proof of step 2. Since f is increasing on each monotonicity interval, we
have that [f (j−1)qn(x), f jqn(x)] is adjoint to the interval

[f jqn(x), f (j+1)qn(x)], 1 ≤ j ≤ rn − 1.
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Combining this fact and step 1 we conclude the proof of step 2.
Step 3. Either f (rn−1)qn(x) → x or frnqn(x) → x as n →∞.
Proof of step 3. Suppose the contrary. Then there are subsequences

f (rin−1)qin (x) and frinqin (x) converging to some points y ∈ (x, aν+1] and
z ∈ (x, aν+1] respectively (it may happen that z = y). Let us take δ > 0
such that |y−x| > 2δ. Then the interval Iδ = (x+δ, y−δ) is a proper subin-
terval of (x, y). We may assume that Iδ ∩ O(x) 6= ∅ for sufficiently small
δ because the interval (x, aν+1) contains points of O(x) arbitrarily close
to x. By assumption, there is m0 ∈ N such that the restriction fm0 |Iδ

is not a homeomorphism. On the other hand, fqn(x) → x as n → ∞,
due to the definition of the numbers qn. Hence, fqin (x) ∈ (x, x + δ),
f (rin−1)qin (x) ∈ (y − δ, y + δ) for all n sufficiently large. According to
step 1, the restriction of fqin on the interval [x, f (rin−1)qin (x)] is a home-
omorphism. For qin ≥ m0 we get the contradiction because the interval Iδ

belongs to [fqin (x), frinqin (x)] for n sufficiently large. This contradiction
concludes the proof of step 3.

Obviously, if frnqn(x) → x, then f (rn−1)qn(x) → x as n →∞. Thus the
convergence f (rn−1)qn(x) → x takes place. As a consequence of step 3, we
get the following step.

Step 4. The lengths of the intervals

[x, fqn(x)], . . . , [f (rn−2)qn(x), f (rn−1)qn(x)]

tend uniformly to zero as n →∞.
As in Pugh’s proof of the C1-closing lemma, it is enough to prove that

given any neighborhood U(f) (in the space Mr+0(k)) and a neighborhood
V (x) of x on S1 there is g ∈ U(f) with periodic orbit through V (x) (see
[22], [24], [8]). Let U(f) ⊂ Mr+0(k) be any neighborhood and Iγ = (x −
γ, x+γ) ⊂ Iν any interval. Without loss of generality we may assume that
f(x) /∈ Iγ . Let h : S1 → S1 be a C∞ diffeomorphism such that h is equal
to the identity outside of Iγ and h|Iγ has no fixed points. To be definite, we
assume that h(z) < z, z ∈ Iγ . Take h so small (in the usual Cr-topology)
that f ◦ h ∈ U(f). Moreover, we may assume that there is a C∞-isotopy
ht : S1 → S1 such that the following holds:

1. h0 = id, h1 = h, and all the maps ht (0 ≤ t ≤ 1) are equal to the
identity outside of Iγ and have no fixed points inside Iγ .

2. ht(z) < z, z ∈ Iγ , and f ◦ ht ∈ U(f) for 0 ≤ t ≤ 1.
3. |ht1(z)− z| ≤ |ht2(z)− z| for all z ∈ Iγ provided that t1 < t2.

Let us take an arbitrary interval Iα = (x − α, x + α), α < γ. By the
property 1) above, there is

β = min
z∈Iα

|h(z)− z| > 0.
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According to step 4, there is n0 such that the lengths of intervals

[x, fqn(x)], . . . , [f (rn−2)qn(x), f (rn−1)qn(x)]

are less than β as n ≥ n0. According to step 3, f2qn(x) ∈ Iα (hence,
fqn(x) ∈ Iα) for sufficiently large n. Fix such an n and put qn = q,
fqn(x) = xq, f2qn(x) = x2q. Our aim is to prove the existence of t∗ ∈ (0, 1)
such that (f ◦ ht∗)q(x2q) = x2q.

Let f j1 [x, x2q], . . . , f js [x, x2q], 0 < j1 < . . . < js < q, be the intervals
such that f jk(x2q) ∈ Iγ , 1 ≤ k ≤ s, and there are no other intervals
f j [x, x2q], 0 < j < q, with the above inclusion. First, let us consider the
following case

h(x2q) > x, h◦f j1◦h(x2q) > f j1(x), h◦f j2−j1◦h◦f j1◦h(x2q) > f j2(x), . . . ,

h ◦ f js−js−1 ◦ h ◦ · · · ◦ h ◦ f j2−j1 ◦ h ◦ f j1 ◦ h(x2q) > f js(x).

Since f preserves the orientation of intervals of continuity and due to prop-
erties 2) and 3) for ht, the points

ht(x2q), ht ◦ f j1 ◦ ht(x2q), ht ◦ f j2−j1 ◦ ht ◦ f j1 ◦ ht(x2q),

ht ◦ f js−js−1 ◦ ht ◦ · · · ◦ ht ◦ f j2−j1 ◦ ht ◦ f j1 ◦ ht(x2q)

belong to the interval [x, x2q] for all t ∈ [0, 1]. So using the fact that by our
assumption ht is equal to the identity outside of Iγ , we have

(f ◦ht)q(x2q) = fq−js ◦ht ◦f js−js−1 ◦ht ◦ · · · ◦ht ◦f j2−j1 ◦ht ◦f j1 ◦ht(x2q).

Since x2q ∈ Iα, it follows that h(x2q) − x2q ≥ β. As a consequence,
h(x2q) ≤ xq. Therefore,

(f ◦ h)q(x2q) ≤ fq−js ◦ f js−js−1 ◦ h ◦ · · · ◦ h ◦ f j1(xq) ≤ fq(xq) = x2q.

On the other hand, (f ◦ h0)q(x2q) = fq(x2q) > x2q. Hence there is t∗ such
that (f ◦ ht∗)q(x2q) = x2q. Suppose now that h(x2q) < x. Since ht(x2q)
increases continuously provided that t decreases and h0(x2q) = x2q > xq >
x, we see that there is 0 < t1 < 1 such that x < ht1(x2q) < xq. As a
consequence,

(f ◦ ht1)
j1(x2q) = f j1 ◦ ht1(x2q) ∈ [f j1(x), f j1+q(x)].

Note that due to the definition of the number j1, (f ◦ ht)j1(x2q) = f j1 ◦
ht(x2q) as 0 < t ≤ t1. If ht1 [(f ◦ht1(x2q)] < f j1(x), then there is 0 < t2 < t1
such that

f j1(x) < ht2 [(f ◦ ht2)
j1(x2q)] < f j1+q(x)
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because ht◦(f◦ht)j1(x2q) = ht◦f j1◦ht(x2q) increases continuously provided
that t decreases and

h0 ◦ (f ◦ h0)j1(x2q) = f j1(x2q) > f j1+q(x).

Hence,

(f ◦ ht2)
j2(x2q) = (f ◦ ht2)

j2−j1 [f j1 ◦ ht2(x2q)] =

= f j2−j1 ◦ ht2 [f
j1 ◦ ht2(x2q) ∈ [f j2(x), f j2+q(x)].

Proceeding in a similar way, one gets 0 < ts < ts−1 < · · · t1 < 1 such that

(f ◦ hts
)js(x2q) ∈ [f js(x), f js+q(x)]

and moreover, (f ◦ hts
)js(x2q) = f js+q(x) = f js(xq). Then

(f ◦ hts
)q(x2q) = (f ◦ hts

)q−js ◦ (f ◦ hts
)js(x2q) = fq−js [f js(xq)] = x2q.

This completes the proof.

4.1. Some applications
This subsection is concerned with applications of Theorem 5 for flows on

orientable two-manifolds M2
h of genus h ≥ 2. To state the results we need

some notations. Let ∆ be the hyperbolic (or Lobachevsky) plane regarded
as the unit disk |z| < 1 of the complex z-plane endowed with the metric
ds = 2|dz|/(1 − |z|2). Any closed orientable surface M = M2

h of genus
h ≥ 2 can be thought of as the quotient space ∆/Γ, where Γ is a finitely
generated Fuchsian group of the first kind acting freely in the unit disc ∆
by isometries. Let D be a geodesic polygon which is a fundamental region
of Γ; it has an even number of sides which are identified in pairs according
with generators ΓD ⊂ Γ. Let N be the net of images of ∂D under Γ.

Due to [14] and [17], we label the sides of D by elements of ΓD as follows
(for more details see [25], [12]) : if the side s is identified in D with the
side γj(s), γj ∈ ΓD, we label the side s by γj . Each side of N is labeled
by the same generator as the corresponding side of D. Then each oriented
geodesic g ∈ ∆ can be coded by a two-sided sequence of generators of
ΓD in accordance with crossing the successive sides of N by this geodesic.
Following [25] we call such a coding the Koebe-Morse coding. For simplicity,
we wil write [g] = . . . i−n . . . i0 . . . in . . . omitting the symbol γ in the Koebe-
Morse coding. Given an integer n and a natural number m, we denote by
B(in,m) the finite block in [g] starting with in and ending at in+m.

Suppose g is a lift of a nontrivially recurrent geodesic g ⊂ M . Then any
symbol of [g] occurs in [g] infinitely many times. A finite block in [g] with
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the same first and last symbol is called a circle block. Given an integer
n, we denote by xn a unique point of the intersection of g with N which
corresponds to in in [g]. For i0 ∈ [g] let us define an increasing sequence of
natural numbers qn(r) as follows. First, fix an orientation on all geodesics
of N assuming that congruent geodesics have consistent orientation. So
x0 ∈ s0 = [a, b], where s0 is some side in N with vertices a, b. Let q1(r)
be the first natural number such that xq1(r) is congruent to some point,
say x′q1

, on (x0, b). Suppose by induction that qn(r) is the first natural
number such that xqn

is congruent to some point, say x′qn
, on (x0, x

′
qn−1

).
In the same way, one can define the integers qn(l) starting with the number
q1(l) being the first natural such that xq1(l) is congruent to some point on
(a, x0).

Take a circle block B(i0, qn(r)) ⊂ [g(l)]. Let rn(i0) ∈ N be the maxi-
mal number of successive repetitions of the block B(i0, qn(r)− 1) in [g(l)]
starting with i0. The sequence R(i0) := {rn(i0)}∞n=1 is called the right p-
expansion with respect to the symbol i0. If one replaces qn(r) by qn(l) one
gets the left p-expansion denoted by L(i0). We say that [g] has p-expansions
of unrestricted type if there is a symbol i0 ∈ [g] such that both sequences
R(i0) and L(i0) are unbounded. Notice that congruent geodesics have the
same Koebe-Morse coding. Hence the above definitions are well defined for
geodesics on M .

Following [5], to each point of the circle at infinity S∞ = {z ∈ C : |z| =
1} one associates the so called f -expansion. It allows one to represent a
geodesic g ⊂ ∆ as a two sided sequence of symbols {jn}+∞−∞ by juxtaposing
the f -expansions of their ideal endpoints. We call the sequence {jn}+∞−∞ the
Bowen-Series expansion of g. As above, one can assign the both right and
left p-expansions Rn(j0), Ln(j0) to each symbol j0 in such a representation.

As a consequence of Theorem 5, we have the following result.

Theorem 6. Let X ∈ χr(M2
h), 1 ≤ r ≤ ∞, h ≥ 2, be a vector field and

E(X) the number of its singularities of saddle type, E(X) < ∞. Let λ be
a nontrivially recurrent trajectory of X through a point m ∈ λ, g = g(λ) be
the geodesic corresponding to λ and [g] its Koebe-Morse coding. If there is
i0 ∈ [g] with

lim sup
n→∞

rn(i0) ≥ 3E(X) + 1, lim sup
n→∞

ln(i0) ≥ 3E(X) + 1, (1)

then there exists Y ∈ χr(M2
h) arbitrarily close to X in the Cr-topology such

that Y has a periodic trajectory through m.

Proof. It follows from the existence of the nontrivially recurrent trajec-
tory that there is a closed transversal C. Since all singularities of X are
of saddle type, the Poincaré forward map f induced on C by X is a Cr

piecewise diffeomorphism. Due to inequality (1), f satisfies the conditions
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of Theorem 5. Hence there exists a functional rotation of X along C which
yields a closing.

To state further consequences of Theorem 5 we need the term of corre-
sponding geodesic. Let λ be a nontrivially recurrent trajectory. A geodesic
g is called the corresponding geodesic for λ and denoted g = g(λ) if g(λ) and
λ have the same asymptotic directions. Note that using closed transversals
for a flow, one can introduce a coding for λ which corresponds in principle
to the coding of g(λ) (see [3] for details).

Now Theorem 6 immediately implies

Theorem 7. Let X ∈ χr(M2
h), 1 ≤ r ≤ ∞, h ≥ 2, be a vector field with

finitely many singularities of saddle type, and let λ be a nontrivially recur-
rent trajectory of X through a point m ∈ λ. Then there exists Y ∈ χr(M2

h)
arbitrarily close to X in the Cr-topology such that Y has a periodic trajec-
tory through m provided that the Koebe-Morse coding of g(λ) has unbounded
p-expansions, where g(λ) is the corresponding geodesic of λ.

In terms of Bowen-Series expansions, one also has

Theorem 8. Let X ∈ χr(M2
h), 1 ≤ r ≤ ∞, h ≥ 2, be a vector field with

finitely many, say E = E(X), singularities of saddle type and let λ be a
nontrivially recurrent trajectory of X through a point m. Suppose that the
Bowen-Series expansion of the geodesic g corresponding to λ has a symbol
s0 with the following properties:

lim sup
n→∞

Rn(s0) ≥ 3E + 1, lim sup
n→∞

Ln(s0) ≥ 3E + 1. (2)

Then there exists Y ∈ χr(M2
h) arbitrarily close to X in the Cr-topology

such that Y has a periodic trajectory through m.

Proof. Due to Theorem I [25], this result reduces to Theorem 6 because
(2) implies (1).
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