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1. INTRODUCTION

One of the problem posed by Smale[26] in his ”Mathematical Problems
for the Next Century” is Hilbert’s 16th problem. It is well known that
Hilbert’s 16th problem consists of two parts. The first part studies the
mutual disposition of maximal number (in the sense of Harnack) of separate
branches of an algebraic curve, and also the ”corresponding investigation”
for non-singular real algebraic varieties; and the second part poses the
questions of the maximal number and relative dispositions of limit cycles
of the planar polynomial vector field:
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dx

dt
= Pn(x, y),

dy

dt
= Qn(x, y), (1)

where Pn and Qn are polynomials of degree n (see Hilbert[11], Farkas[8],
Ye[29], Zhang et al [31]). As professor Smale said, ”Except for the Rie-
mann hypothesis, it seems to be the most elusive of Hilbert’s problems.” In
fact, for the first part, the specialists of the real algebraic geometry usually
study the topology of non-singular real planar projective algebraic curves
of degree m. Up to now, we know the schemes of mutual arrangement
of ovals realized by M -curves only for m ≤ 7 (see Gudkov[10], Viro[27]
and Wilson[28] etc). For the second part, the answer still seems to be far
away. Let H(n) be the maximal number of limit cycles of (1). Up to now,
we only know that a given system (1) always has a finite number of limit
cycles (see Ilyashenko[12]) and that H(2) ≥ 4,H(3) ≥ 11 (see recent dis-
cussions in Chan et al[3], Li[14-17], Lloyd[20], Luo[21], Perko[23], Ye[30]
and etc). Also by considering a small neighbourhood of a singular point,
H(n) ≥ (n2 + 5n − 20 − 6(−1)n)/2 for n ≥ 6 (see Otrokov[22]). Recently,
Christopher and Lloyd[6] showed that H(2k−1) ≥ 4k−1(2k− 35

6 )+3.2k− 5
3

(for example H(7) ≥ 25) by perturbing some families of closed orbits of
a Hamiltonian system sequence in small neighbourhoods of some center
points and using a ”quadruple transformation”. The method given by [6]
is very interesting. Unfortunately, the computation of a lower bound is not
correct (see Section 3: Remark 3.1).

In order to obtain more limit cycles and various configuration patterns of
their relative dispositions, one of us indicated in [13]-[17] that an efficient
method is to perturb the symmetric Hamiltonian systems having maxi-
mal number of centers, i.e., to study the weakened Hilbert’s 16th problem
posed by V.I.Arnold[2] in 1977 for the symmetric planar polynomial Hamil-
tonian systems, since bifurcation and symmetry are closely connected and
symmetric systems play pivotal roles as a bifurcation point in all planar
Hamiltonian system class. To investigate perturbed Hamiltonian systems,
we should first know the global behaviour of unperturbed polynomial sys-
tems, namely, determine the global property for the families of real planar
algebraic curves defined by the Hamiltonian functions. Then by using
proper perturbation techniques, we shall obtain the global information of
bifurcations for the perturbed non-integrable systems. In this sense, we say
that our study method will utilize both parts of Hilbert’s 16th problem.
On the basis of the method of detection functions posed by Li[13], in our
recent papers [4,5,18,19] we have given a method of control parameters in
order to obtain more limit cycles for Zq−equivariant (q = 2− 6) perturbed
polynomial Hamiltonian systems of the fifth degree. With the help of nu-
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merical analysis (using Maple[1] or Mathematica) we showed that there
exist parameter groups such that these systems have at least 17-24 limit
cycles having various compound eyes configurations.

In this paper, we shall use previous idea and the method posed in [6] to
investigate some perturbed Z2− (or Z4−) equivariant planar Hamiltonian
vector field sequences of degree n (n = 2k − 1 and n = 3× 2k−1 − 1), some
new lower bounds for H(n) in Hilbert’s 16th problem and configurations
of compound eyes of limit cycles are given.

The paper is divided into five sections. In Section 2, we state 3 lemmas
as preliminary knowledge. In Section 3, we discuss the method of Ref.[6]
and correct the computation of the lower bound for H(2k − 1). Section
4 gives a new lower bound for H(2k − 1) by using a Z2−equivariant per-
turbed planar Hamiltonian vector field sequence. In Section 5, we consider
Z2−equivariant Hamiltonian system sequence of degree 3 × 2k−1 − 1. A
lower bound for H(3 × 2k−1 − 1) is obtained.

2. PRELIMINARY LEMMAS

We consider the following perturbed planar polynomial Hamiltonian sys-
tem

dx

dt
= −∂H

∂y
+ εR1(x, y) = f1(x, y) + εR1(x, y),

dy

dt
=

∂H

∂x
+ εR2(x, y) = f2(x, y) + εR2(x, y), (2)

where H(x, y) is the Hamiltonian, 0 < ε � 1.

Lemma 1. (see [6], p221) (i) Suppose that R2(x, y) = 0, p = (xc, yc) is
a non-degenerate center of the unperturbed Hamiltonian system of (2) and
let U be a neighbourhood of p. For n ∈ Z, there is ε0 and a polynomial
R1(x, y) of degree 2n + 1 such that the perturbed system (2) has at least n
limit cycles in U for 0 < ε < ε0. Without loss of generality, suppose that
p = (0, yc) is on the y−axis. Then, the perturbation term R1(x, y) can have
the form

R(x) =
n∑

k=0

(−1)kηkx2(n−k)+1, (3)
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where η0 = 1 and ηr � ηr−1 (r = 1, · · · , n).

(ii) Suppose that (2) has N collinear non-degenerate centers and R2(x, y) =
0. Then the ηk of (3) can be so chosen that n limit cycles appear around
each of the centers simultaneusly.

Suppose the following conditions hold:

(A1) The unperturbed system (2)ε=0 defines a Zq−equivariant Hamilto-
nian vector field (q ≥ 2) for which all centers are non-degenerate and all
saddle points are hyperbolic.

(A2) When h ∈ (−∞, h1) (or h ∈ (h1,∞)), one branch family of the
curves {Γh} defined by the Hamiltonian function H(x, y) = h lies in a
global period annulus enclosing all finite singular points of (2)ε=0. As
h → h1,Γh approaches an inner boundary of the period annulus consisting
of a heteroclinic (or homoclinic) loop.

We know from Li[13] that the condition (A2) holds if and only if the
Hamiltonian H(x,y) of (2)ε=0 is positive (or negative) definite at infinity.
Let d0 be the maximal diameter of the area inside the inner boundary and
A > d0. For the ”quadruple transformation” defined by Ref.[6](p222), we
have the following generalized result.

Lemma 2. Suppose that (A1) and (A2) hold. Then the map

(x, y) → (X2 − A, Y 2 − A) (4)

transforms (2) to a new system which has the same orbits as

dX

dt
= −∂Hd

∂Y
+ εY R1(X2 − A, Y 2 − A),

dY

dt
=

∂Hd

∂X
+ εXR2(X2 − A, Y 2 − A), (5)

where Hd(X,Y ) = H(X2 − A, Y 2 − A) is the new Hamiltonian of the un-
perturbed system (5)ε=0. Furthermore, we have (i) For the unperturbed
system (5)ε=0, it has four times as many period annuluses as (2)ε=0 which
lie in each quadrant and do not intersect the X−axis and Y −axis. At
all image points except the origin of the singular points of (2)ε=0, their
Hamiltonian values are preserved. There exist new singular points (Xi, 0)
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and (0, Yj) on the axes where Xi and Yj satisfy f1(X2
i − A,−A) = 0 and

f2(−A, Y 2
j − A) = 0, respectively. There is a global period annulus sur-

rounding all finite singular points of (5)ε=0.

(ii) For the perturbed system (5), it has four copies of the existing limit
cycles of (2). These limit cycles do not intersect the X and Y axes, if the
”shift constant” A is moderately large.

Proof. Notice that for x > −A, y > −A, all orbits of (2)ε=0 are com-
pact and X = ±√

x + A, Y = ±√
y + A can be determined, hence the

conclusions of Lemma 2.2 follow.

As an example to understand Lemma 2.2, we consider a Z6−equivariant
Hamiltonian system of degree 5 (see [18]):

dx

dt
= −y + 2δ(x2 + y2)y − α(x2 + y2)2y

+β(5(x2 + y2)2y − 20(x2 + y2)y3 + 16y5),
dy

dt
= x − 2δ(x2 + y2)x + α(x2 + y2)2x

+β(5(x2 + y2)2x − 20(x2 + y2)x3 + 16x5),

or in the polar coordinates:

dr

dt
= βr5 sin 6θ,

dθ

dt
= 1 − 2δr2 + (α + β cos 6θ)r4, (6)

which has the Hamiltonian

H(r, θ) = −1
2
r2 +

1
2
δr4 − 1

6
(α + β cos 6θ)r6.

Suppose that α > β > 0, α + β > 1 and δ = (α + β + 1)/2. From
Ref.[18], we know that the system (6) has 25 finite singular points at (0, 0)
and (z1, 0), (z2, 0), (z3, π/6), (z4, π/6) and their Z6−equivariant symmetric
points, where

z1 =
1√

α + β
, z2 = 1, z3, z4 =

√
δ ∓

√
δ2 − α + β

α − β
.

Let G = (α, β, δ) = (1.4, 0.25, 1.325). We have z1 = 0.7784989442, z2 =
1, z3 = 0.6895372608, z4 = 1.352363188 and

h1 = H(z1, 0) = −0.12090603, h2 = H(z2, 0) = −0.1125
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h3 = H(z3, π/6) = −0.1085647965, h4 = H(z4, π/6) = 0.1290200579.

In this case, the phase portrait of (6) is shown in Figure 1 (1) (only
homoclinic and heteroclinic orbits are drawn in all phase portraits of this
paper). Under the map (x, y) → (x2 − 3, y2 − 3), the new system of degree
11 is Z2−equivariant. It has 109 finite simple singular points and the phase
potrait shown in Figure 1 (2).

FIG. 1. Four copies of a Z6-equivariant Hamiltonian system.

We also need to use the following obvious conclusion.

Lemma 3. Suppose that the Hamiltonian function H(x, y) of (2)ε=0 is
Zq−invariant, then the Hamiltonian function Hd(X,Y ) = H(X2−A, Y 2−
A) of (5)ε=0 is Z2−invariant. In other words, the orbits of (5)ε=0 have
Z2-equivariant symmetry. Thus, if Γh

i is a closed orbit around a center Ci

of (5)ε=0 on an axis for any h ∈ (hc, hs), then

I(h) =
∮

Γh
i

(Y R1(X2 − A, Y 2 − A)dY − XR2(X2 − A, Y 2 − A)dX)

=
∫ ∫

intΓh
i

(2XY (
∂R1(X2 − A, Y 2 − A)

∂(X2 − A)
+

∂R2(X2 − A, Y 2 − A)
∂(Y 2 − A)

))dXdY

= 0 (7)

This lemma implies that the perturbation terms of the right hand of (5)
do not create any limit cycle around the neighbourhood of a center on an
axis.

In the following sections, we shall consider the following perturbed Hamil-
tonian system sequence:

dx

dt
= −∂Hk

∂y
+ εPk(x, y),
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dy

dt
=

∂Hk

∂x
+ εQk(x, y), (PHk)

for k = 2, 3, · · · , where Hk+1(x, y) = Hk(x2−Ak−1, y2−Ak−1), Pk+1(x, y) =
Pk(x2 − Ak−1, y2 − Ak−1), Qk+1(x, y) = Qk(x2 − Ak−1, y2 − Ak−1).

3. A CORRECTION TO THE LOWER BOUNDS OF H(2k − 1)
GIVEN IN [6]

We first discuss the system given in [6]. Suppose that H2(x, y) = (x2 −
1)2 + (y2 − 1)2, i.e., we consider the cubic system

dx

dt
= −4y(y2 − 1) + ε(

1
3
(x − y)3 − ε(x − y)),

dy

dt
= 4x(x2 − 1) (8)

Let (8) be the system (PH2). Then (PH2)ε=0 is a Z4−equivariant system
which has the phase portrait shown in Figure 2 (1). Since P2(x, y) =
1
3 (x − y)3 − ε(x − y) and Q2(x, y) = 0. By using Lemma 2.1, it follows
that there exist at least 3 limit cycles around 3 centers (−1,−1), (0, 0) and
(1, 1) of (8)ε=0, respectively.

FIG. 2. Copies of a Z4-equivariant polynomial Hamiltonian vector fields.

We now consider the map: (x, y) → (x2 − 1, y2 − 1). By Lemma 2.2,
under this map, the unperturbed system (PH3)ε=0 has the phase portrait
shown in Figure 2 (2). For the perturbed system (PH3), the perturbed
terms become P

(1)
3 (x, y) = yP2(x2 − 1, y2 − 1). As the first step, the map

creates a new system having at least 12 = 4 × 3 limit cycles surrounding
the image points of (-1,-1), (0,0) and (1,1), respectively.
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As the second step, by using Lemma 2.1, we take P
(2)
3 (x) = η0x

7−η1x
5+

η2x
3 − η3x. Thus, around 3 = 22 − 1 centers on the y−axis of (PH3)ε=0,

at least 9 = 3 × 3 limit cycles are created.

Let P3(x, y) = P
(1)
3 (x, y) + P

(2)
3 (x), then the system (PH3) has at least

S3 = 4 × 3 + 3 × 3 = 21 limit cycles.

We next consider the map:(x, y) → (x2−2, y2−2). By Lemma 2.2, under
this map, the unperturbed system (PH4)ε=0 has the phase portrait shown
in Figure 2 (3). The same two-step method as the above shows that the
system (PH4) has at least S4 = 4 × 21 + 7 × 7 = 133 limit cycles.

By using inductive method for the system (PHk), first, taking the map:
(x, y) → (x2 − 2k−2, y2 − 2k−2), we have the perturbed terms P

(1)
k+1(x, y) =

yPk(x2 − 2k−2, y2 − 2k−2). Second, by using Lemma 2.1 to perturb the
2k−1 centers on the y−axis of (PHk+1)ε=0, we obtain the perturbed terms
P

(2)
k+1(x) as (3). It gives 2k − 1 limit cycles. Hence, by using Pk+1(x, y) =

P
(1)
k+1(x, y) + P

(2)
k+1(x, y) as the perturbation for (PHk+1), we have

Sk+1 = 4 × Sk + (2k − 1)2.

Let Sk = 4kσk. Then

σk+1 = σk +
1
4
− 1

2k+1
+

1
4k+1

σk = σk−1 +
1
4
− 1

2k
+

1
4k

= σ2 +
1
4
(k − 2) − (

1
23

+ · · · + 1
2k

) + (
1
43

+ · · · + 1
4k

)

= σ2 +
1
4
k − 35

48
+

1
2k

− 1
3 × 4k

(9)

Note that σ2 = 3
16 . Thus,

Sk = 4k−1(k − 13
6

) + 2k − 1
3

(10)

Remark 4. It was stated in Ref.[6] (p223) that ”We take R(x, y) to
be of the form yR1(x) + R2(y), · · · . We then construct R2(y), · · · , to be
a polynomial of degree 2k+1 − 1 so that 2k − 1 limit cycles appear near
each of the 2k − 1 centers on the x−axis.” The last conclusion is incorrect!
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Because ∂R2(y)
∂x ≡ 0, under the perturbed terms given in [6] (for which

R2(x, y) ≡ 0 in (2)), it has no contribution to the divergence of the vector
field. Therefore, the term R2(y) cannot create any limit cycle from the
centers on the x−axis.

Write that n = 2k−1. Then k = log2(n+1) = ln(n+1)
ln 2 ≈ (1.442695) ln(n+

1). From (10), we obtain

Proposition 5. By using the Z4−equivariant systems (PHk) to create
limit cycles, where Qk(x, y) = 0 and (PH2) is (11), we have

H(n) ≥ 1
4
(n + 1)2((1.442695) ln(n + 1) − 13

6
) + n +

2
3

(11)

This Proposition is the correction of Theorem 3.4 of Ref.[6].

4. A NEW LOWER BOUND FOR H(2k − 1)

In this section, we consider the perturbed Z2−equivariant vector field
(see Li and Huang [14]):

dx

dt
= y(1 − y2) + εx(y2 − x2 − λ),

dy

dt
= −x(1 − 2x2) + εy(y2 − x2 − λ), (12)

where 0 < ε � 1. The system (12)ε=0 has Hamiltonian

H2(x, y) = −2x4 − y4 + 2(x2 + y2) (13)

There exist 9 finite singular points of (12)ε=0 which are the intersection
points of the straight lines x = 0, x = ± 1√

2
and y = 0, y = ±1. The phase

portrait of (12)ε=0 is shown in Figure 3 (2).

Let (12) be the system (PH2) and suppose that −4.80305 + O(ε) < λ <
−4.79418 + O(ε). We know from [14] that the system (PH2) has at least
11 limit cycles having the configuration shown in Figure 3 (1). By taking
the map: (x, y) → (x2 − 3, y2 − 3), the new unperturbed system (PH3)ε=0

has 49 finite singular points which are intersection points of the straight
lines x = 0, x = ±

√
3 ± 1√

2
, x = ±√

3 and y = 0, y = ±√
2, y = ±√

3, y =

±2. The phase portrait of (PH3)ε=0 is shown in Figure 3 (3). The first
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FIG. 3. Four copies of the Z2-equivariant Hamiltonian system (12)ε=0

perturbed terms of (PH3) have the forms:

P
(1)
3 (x, y) = y(x2 − 3)((y2 − 3)2 − (x2 − 3)2 − λ),

Q
(1)
3 (x, y) = x(y2 − 3)((y2 − 3)2 − (x2 − 3)2 − λ).

These are polynomials of degree 7. Hence, firstly, we have from Lemma
2.2 that there exist 4 × 11 = 44 limit cycles of (PH3) under the first per-
turbations P

(1)
3 and Q

(1)
3 . By Lemma 2.3, the above perturbations do not

create limit cycle around the centers on the y−axis. Thus, secondly, we use
Lemma 2.1 to add new perturbation terms P

(2)
3 and Q

(2)
3 = 0 such that 3×3

limit cycles appear around the 3 = 22−1 centers of (PH3)ε=0 on the y−axis.
To sum up, two sets of perturbations give rise to S3 = 4× 11 + 3× 3 = 53
limit cycles of (PH3).

By using inductive method, similar to that in Section 3, from the ”quadru-
ple transformation” (x, y) → (x2 − 3k−1, y2 − 3k−1) and the bifurcations
of small amplitude limit cycles around the centers on the y−axis for the
system (PHk+1), k = 3, 4, · · · , we have

Sk+1 = 4 × Sk + (2k − 1)2 (14)

limit cycles. Note that S2 = 11. Thus we obtain from (14) and (9) that

Sk = 4k−1(k − 1
6
) + 2k − 1

3
(15)
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Proposition 6. By using the Z2−equivariant systems (PHk) to yield
limit cycles, where (PH2) is (12), we have

H(n) ≥ 1
4
(n + 1)2((1.442695) ln(n + 1) − 1

6
) + n +

2
3

(16)

5. A LOWER BOUND FOR H(3 × 2k−1 − 1)

In this section, we consider the perturbed Z2-equivariant vector field of
degree 5 (see Ref.[19]):

dx

dt
= −y(1 − by2 + y4) − εx(px4 + qy4 + gx2y2 + mx2 + ny2 − λ),

dy

dt
= x(1 − ax2 + x4) − εy(px4 + qy4 + gx2y2 + mx2 + ny2 − λ)

(17)

or its polar coordinate form:

dr

dt
=

1
4

sin 2θ((b − a) − (b + a) cos 2θ + 2r2 cos 2θ)r3

− εr(r4(p cos4 θ + q sin4 θ + g cos2 θ sin2 θ) + r2(m cos2 θ + n sin2 θ) − λ),
dθ

dt
= 1 − 1

8
(3(a + b) + 4(a − b) cos 2θ + (a + b) cos 4θ)r2 +

1
8
(5 + 3 cos 4θ)r4,

(18)

where a > b > 2. (17)ε=0 and (18)ε=0 have the Hamiltonian functions as
follows:

H(x, y) = −1
2
(x2 + y2) +

1
4
(ax4 + by4) − 1

6
(x6 + y6), (19)

H1(r, θ) = −1
2
r2 +

1
32

(3(a + b) + 4(a − b) cos 2θ

+(a + b) cos 4θ)r4 − 1
48

(5 + 3 cos 4θ)r6 (20)
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Denote that

ξ1 =
√

(a −
√

a2 − 4)/2, ξ2 =
√

(a +
√

a2 − 4)/2,

η1 =
√

(b −
√

b2 − 4)/2, η2 =
√

(b +
√

b2 − 4)/2

FIG. 4. Four copies of the Z2-equivariant Hamiltonian system (17)ε=0

It is easy to see that the system (17) has 13 centers at

(0, 0), (ξ1, η1), (ξ1,−η1), (ξ2, 0), (ξ2, η2), (ξ2,−η2), (0, η2)

and their Z2−equivariant symmetric points, 12 saddle points at

(0, η1), (ξ1, 0), (ξ1, η2), (ξ1,−η2), (ξ2, η1), (ξ2,−η1)

and their Z2−equivariant symmetric points. We have from (19) that

hc
0 = H(0, 0) = 0,

hc
1 = H(ξ1, η1) = H(ξ1,−η1) = − 1

24
(6(a+b)−(a3+b3)+(a2−4)

3
2 +(b2−4)

3
2 ),

hc
2 = H(ξ2, 0) = − 1

24
(6a − a3 − (a2 − 4)

3
2 ),

hc
3 = H(0, η2) = H(0,−η2) = − 1

24
(6b − b3 − (b2 − 4)

3
2 ),

hc
4 = H(ξ2, η2) = H(ξ2,−η2) = − 1

24
(6(a+b)−(a3+b3)−(a2−4)

3
2−(b2−4)

3
2 );

and
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hs
1 = H(ξ1, 0) = − 1

24
(6a − a3 + (a2 − 4)

3
2 ),

hs
2 = H(0, η1) = − 1

24
(6b − b3 + (b2 − 4)

3
2 ),

hs
3 = H(ξ1, η2) = − 1

24
(6(a + b) − (a3 + b3) + (a2 − 4)

3
2 − (b2 − 4)

3
2 ),

hs
4 = H(ξ2, η1) = − 1

24
(6(a + b) − (a3 + b3) − (a2 − 4)

3
2 + (b2 − 4)

3
2 )

Suppose that (a, b) = (2.5, 2.3). We have

ξ1 = 0.7071067812, ξ2 = 1.415213562, η1 = 0.762960789, η2 = 1.310683347

and

hc
1 = −0.2436732647, hs

2 = −0.1290899314, hs
3 = −0.1215767351, hs

1 = −0.1145833333,

hc
3 = −0.0069934018, hs

4 = 0.03757673603, hc
4 = 0.1596732652, hc

2 = 0.16666666667,

−∞ < hc
1 < hs

2 < hs
3 < hs

1 < hc
3 < 0 < hs

4 < hc
4 < hc

2.

The unperturbed system (17)ε=0 has the phase portrait of Figure 4 (2). In
Ref.[19], we showed that when

(p, q, g,m, n) = (−.144543, 1.157350656,−3.328234861, 3.014502, 6.564525872),

λ ∈ (λ1(hs
2),min(max(λ1(h)),max(λ6(h)))) ≈ (9.319050412, 9.319051762),

the system (17) has at least 23 limit cycles having the configuration shown
in Figure 4 (1).

We now take (17) as (PH2). Under the map (x, y) → (x2−3, y2−3), the
new system (PH3)ε=0 has the phase portrait shown in Figure 4 (3). There
exist 121 finite singular points of (PH3)ε=0 consisting of the intersection
points of the straight lines x = 0, x = ±√

3 ± ξi, x =
√

3 and y = 0, y =
±√

3 ± ηi, y =
√

3, (i = 1, 2). There are 5 = 3 × 22−1 − 1 centers on the
y−axis. By Lemma 2.2, the perturbed terms
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P
(1)
3 (x, y) = y(x2 − 3)(p(x2 − 3)4 + q(y2 − 3)4

+g(x2 − 3)2(y2 − 3)2 + m(x2 − 3)2 + n(y2 − 3)2 − λ)

Q
(1)
3 (x, y) = x(y2 − 3)(p(x2 − 3)4 + q(y2 − 3)4

+g(x2 − 3)2(y2 − 3)2 + m(x2 − 3)2 + n(y2 − 3)2 − λ)

quadruple the number of limit cycles of (PH2), i.e., there exist 92 =
4 × 23 limit cycles of (PH3). Next, by using Lemma 2.1 to perform sec-
ondary perturbation for 5 centers on the y−axis of (PH3)ε=0, we have
P

(2)
3 = η0x

11 − η1x
9 + · · · + η4x

3 − η5x,Q
(2)
3 (x, y) = 0. It give rise to

52 = (3 × 22−1 − 1)2 = 25 limit cycles. Thus, the system (PH3) has at
least 92+25=117 limit cycles.

Again by using inductive method, suppose that the system (PHk) has
Sk limit cycles. First, transform the system (PHk) by the quadruple map:
(x, y) → (x2 − 3k−1, y2 − 3k−1). Then perform secondary perturbation to
the centers on the y−axis of (PHk+1)ε=0. We have

Sk+1 = 4 × Sk + (3 × 2k−1 − 1)2. (21)

Also let Sk = 4kσk. Similar to the computation of (8), we have

σk = σ2 +
9
16

(k − 2) − 3
2
(

1
23

+ · · · + 1
2k

) + (
1
43

+ · · · + 1
4k

)

= σ2 +
9
16

k − 71
48

+
3

2k+1
− 1

3 × 4k
(22)

Notice that σ2 = 23
16 . Thus,

Sk = 4k−1(
9
4
k − 1

6
) + 3 × 2k−1 − 1

3
(23)

Let n = 3 × 2k−1 − 1. Then, k − 1 = log2(
n+1)

3 ) = ln(n+1)−ln 3
ln 2 ≈

(1.442695)(ln(n + 1) − ln 3) ≈ (1.442695) ln(n + 1) − 1.5849625. We have
from (23) that

Proposition 7. By considering the Z2−equivariant systems (PHk) to
yield limit cycles, where (PH2) is (17), we have

H(n) ≥ 1
4
(n + 1)2((1.442695) ln(n + 1) +

25
27

− ln 3
ln 2

) + n +
2
3
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Denote that µ = 1
4 ln 2 ≈ 0.360673. To sum up, the propositions 3.2, 4.1

and 5.1 imply that

THEOREM 5.2. There are two sequences of n = 2k−1 and n = 3×2k−1−
1, k = 2, 3, · · · , and a constant µ = (4 × ln 2)−1 such that the number
H(n) of limit cycles of the systems (PHk) grows at least as rapidly as
µ(n + 1)2 ln(n + 1).
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