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In [5], local problems around a class of rank-2 singular points called simple
such as normal forms, finite determinacy, and versal unfoldings are studied for
smooth positive quadratic differential forms on surfaces, as well as for their
associated pair of foliations (with singularities). To extend this study to the
class of rank-2 singular points, two cases of rank-2 singular points remain to
be treated, namely that of type C and that of type E(λ), with λ ≥ 1. Using
the theory of normal forms for singularities of positive quadratic differential
forms, we obtain the phase portrait and a versal unfolding for type C singular
points proving that their codimension is three.
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1. INTRODUCTION

This paper focuses on local problems around rank-2 singular points of
smooth positive quadratric differential forms. We deal with normal forms,
finite determinacy and versal unfoldings. For a class of generic singular
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points called simple similar problems are studied in [5]. We propose to
complete our study to any rank-2 singular point.

We now recall standard definitions and give an overview of the main
results of [5].

A Cr– quadratic differential form on an oriented, connected, smooth
two–manifold M is an element of the form ω =

∑n
k=1 φkψk, where φk and

ψk are 1-forms on M of class Cr. Therefore, for each point p in M , we
have that ω(p) is a quadratic form on the tangent space TpM . We say that
ω is positive if, for every point p in M , the subset ω(p)−1(0) of TpM is
either the union of two transversal lines or all TpM . In the former case,
p will be called a regular point of ω. In the latter case, p will be called a
singular point of ω.

If p is a regular point of such a ω, we call L1(ω)(p) (resp. L2(ω)(p)) the
line of ω(p)−1(0) which is characterized as follows. Let C be a positively
oriented circle around the origin of TpM . By definition, q ∈ C ∩ L1(ω)(p)
(resp. q ∈ C ∩ L2(ω)(p)) if there exists a small open arc (q1, q2) on C con-
taining q such that ω(p) is positive (resp. negative) on (q1, q) and negative
(resp. positive) on (q, q2). Thus we associate to each positive Cr-quadratic
differential form ω on M a triplet C(ω) = { f1(ω) , f2(ω) , Sing(ω)}
which is called the configuration associated to ω , where Sing(ω) is the
set of singular points of ω , and f1(ω) and f2(ω) are the two transversal
Cr one-dimensional foliations defined on M −Sing(ω) whose tangent lines
at each regular point p are L1(ω)(p) and L2(ω)(p), respectively.

Two positive C∞-quadratic differential forms ω1 and ω2 will be called
equivalent if there exists a homeomorphism h of M such that h(C(ω1)) =
C(ω2). In other words, h maps Sing(ω1) onto Sing(ω2), and leaves of
f1(ω1) (resp. f2(ω1)) onto leaves of f1(ω2) (resp. f2(ω2)). A positive
C∞-quadratic differential form ω will be called structurally stable if any
positive C∞-quadratic differential form ω̃, which is C1–sufficiently close to
ω, is equivalent to ω. A complete characterization of structurally stable
positive C∞-quadratic differential forms with the C2-topology is obtained
in [1] and [3].

In order to introduce the type of singular points studied here, we recall
that a singular point p of a positive quadratic differential form ω is said to be
of rank-k, for k = 0, 1, 2, if there are local coordinates (x, y) taking p to the
origin such that if (x, y)∗(ω) = ω = a(x, y)dy2 +2b(x, y)dxdy+c(x, y)dx2 ,
then the Jacobian matrix of the map g = (a, 2b, c) at the origin has rank-
k. A rank-2 singular point p as above is called simple if the origin is a
nondegenerate minimum of the map h = b2 − ac; otherwise p is called
semi-simple.

A normal form for a simple singular point is

ω = a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 ,
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with

a(x, y) = y +M1(x, y)
b(x, y) = b1x+ b2y +M2(x, y) (1)
c(x, y) = −y +M3(x, y)

where b1 6= 0 and Mi(x, y) = O((x2 + y2)
1
2 ), for i = 1, 2, 3.

A singular point as above is called hyperbolic if b22 − 2b1 + 1 6= 0 and
b1 6= 1

2 . These singular points are C1-locally stable, that is, their codimen-
sion is zero (see [1, Proposition 6.2]). There are three types of hyperbolic
singular points: type D1 if b22 − 2b1 + 1 < 0, type D2 if b22 − 2b1 + 1 > 0,
b1 > 0, b1 6= 1

2 and type D3 if b1 < 0. A corresponding versal unfolding is

ydy2 + 2xdxdy− ydx2 , ydy2 +
1
2
xdxdy− ydx2 , ydy2− 2xdxdy− ydx2.

Figure 1 shows their phase portraits.
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Figure 1.

A simple singular point which admits a normal form as in (1), with b2 6= 0
and either b22−2b1 +1 = 0 or b1 = 1

2 , is called of type D12. Its codimension
is one and a versal unfolding is

ydy2 + 2((1− λ)x+ y)dxdy − ydx2 ,

with λ ∈ IR such that λ < 1
2 (see [5, Theorem 5.7]). The corresponding

bifurcation diagram is shown in Figure 2.
A simple singular point which admits a normal form as in (1), with b2 = 0

and b1 = 1
2 , is said to be of type D̃1. It is of codimension 2 and a versal

unfolding is

ydy2 + xdxdy + (λ1x+ (−1 + λ2)y)dx2,

with λ1, λ2 ∈ IR small (see [5, Theorem 5.9]). Figure 3 shows the config-
uration around the singular point, as well as its bifurcation diagram.
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Figure 3.

When p is a semi-simple singular point of ω, the coordinates (x, y) may
be chosen in such a way that the Jacobian matrix of the map g = (a, 2b, c)
at the origin is one of the matrices 0 1

1 0
0 0

 ,

 0 1
−1 0
0 0

 ,

 0 0
1 0
1 −1

 ,

 0 0
λ 0
0 −1

 or

 1 1
λ 0
0 0

 ,

with λ 6= 0. (See [3, Proposition 2.9, p. 7].)
These singularities are called, respectively, of type A, B, C, E(λ) and

F(λ). Only those of type A, B, E(λ), with λ < 0 and 0 < λ < 1, as well as
those of type F(λ) with λ 6= 0, 1

4 , are C1–locally stable (see [3, Theorem
B, p. 8]). The singular points of type F( 1

4 ) are topologically determined
by their linear part. They are of codimension 1 (see [4, Proposition 4.3,
p. 13]) and a versal unfolding, which is equivalent to a versal unfolding of
a D12-singular point, is

(x+ y)dy2 +
1
4
(1 + λ)xdxdy − (x3 + y3)dx2 ,

with λ ∈ IR.
We consider in this paper one of the two cases of rank-2 that remain to

be treated, namely the case in which the singular point is of type C under
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a nonflatness condition which we next define. The last case to be treated,
E(λ), with λ ≥ 1, will be presented in a forthcoming article.

Finally, after a linear change of coordinates, the associated matrix of a
positive quadratic differential form at a singular point of type C is −1 1

0 1
0 0

 .

In what follows, we will use this linear part.
The paper is organized as follows:
Section 2 contains general results on rank-2 singular points, as well as on

smooth k-parameter families of positive quadratic differential forms passing
through a form with a rank-2 singular point.

In Section 3 via an analytic change of coordinates, we find a normal form
for any family ω(µ), with parameter µ ∈ IRk, such that ω(0) has a type C
singular point (see Theorem 3.1 of Section 3). This implies that if ω has
a type C singular point at the origin, then there is an analytic change of
coordinates such that if

ω = a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 ,

then

a(x, y) = −x+ y +M1(x, y) ,

b(x, y) =
1
2
y + b2x

2 + b3x
3 + · · ·+ bnx

n +M2(x, y) ,

c(x, y) = c3x
3 + c4x

4 + · · ·+ cnx
n +M3(x, y) ,

with M1 = O(| (x, y) |) and M2,M3 = O(| (x, y) |n).
Using the normal form above, we define the nonflatness condition as

follows. We require that the maps b(x, 0) or c(x, 0) be nonflat in x = 0.
Since ω is positive, this condition implies that there exist an integer k ≥ 2
and a pair (b0, c0) 6= (0, 0), with c0 ≥ 0, such that

a(x, y) = −x+ y +M1(x, y)

b(x, y) =
1
2
y + b0x

k +M2(x, y)

c(x, y) = c0x
2k−1 +M3(x, y) ,

with M1(x, y) = O(| (x, y) |), M2(x, y) = O(| (x, y) |k) and M3(x, y) =
O(| (x, y) |2k−1) (see Remark 3.2 of Section 3).

In Section 4, we determine the local phase portrait of the foliations as-
sociated with a positive quadratic differential form around a nonflat type
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C singular point and show that it is always topologically equivalent to the
one shown in Figure 4 (see Theorem 4.1).
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Figure 4.

Section 5 contains our main result. For a nonflat type C singular point,
we find a versal unfolding and show that its codimension is three. Further,
we present its bifurcation diagram.

2. PRELIMINARY RESULTS

In this section, we give some general results on rank-2 singular points and
smooth k-parameter families of positive quadratic differential forms passing
through a form with a rank-2 singular point. These results are used in the
subsequent sections, as well as in a forthcoming article concerning singular
points of type E(λ), with λ ≥ 1.

We first record a proposition that appears in [4, Proposition 2], which
asserts that the rank-2 singular points are persistent by small perturbations
of the positive quadratic differential form. In other words,

Proposition 1. Let ω0 ∈ F(M) , and let p ∈ Sing(ω0). If p is a
rank-2 singular point of ω0 , then there exist neighborhoods N of ω0 and
V of p as well as a C∞ –map ρ : N → V such that, for every ω ∈ N , the
point ρ(ω) is the unique singular point of ω in V . Moreover, this singular
point is of rank-2.

Our next result asserts that, for a smooth family ω(µ) of positive C∞-
quadratic differential forms with parameter µ ∈ IRk, in such that ω(0)
has a rank-2 singular point at the origin, we may assume, without loss of
generality, that the origin is a singular point of ω(µ), for all | µ | small. In
other words,

Lemma 2. Let ω(µ) be an arbitrary smooth family of positive C∞-
quadratic differential forms with parameter µ ∈ IRk such that ω(0) has a
rank-2 singular point at the origin. Then there exists a change of coordi-
nates of the form (x, y, µ) = (h(u, v, µ), µ) such that, for all µ with | µ |
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small, the origin is a singular point of

(u, v)∗(ω(µ)).

Proof. By hypothesis, (a, b, c)((0, 0), 0̄)) = (0, 0). Assume that

D1(a, b)((0, 0), 0̄) =
(
a1 a2

b1 b2

)
is nonsingular. Since the map (a, b) : IR2 × IRk → IR2 is smooth, by the
implicit function theorem there exists a smooth map S defined in a small
neighborhood of 0̄ ∈ IRk such that S(0̄) = (0, 0) and

(a, b)(S(µ), µ) = (0, 0) ,

for all µ in such a neighborhood.
Since ω(µ) is positive for all µ, we have (a, b, c)(S(µ), µ) = (0, 0, 0). Hence

in this case the lemma follows by using the change of coordinates

(x, y, µ) = (u, v, µ)− (S(µ), 0̄).

If the matrix D1(a, b)((0, 0), 0̄) is singular, then D1(b, c)((0, 0), 0̄) is non-
singular and the proof of the lemma is analogous.

The following gives us a normal form for the linear part of ω(µ) at rank-
2 singular points which are of two classes: one class includes the singular
points of type C, while the other class includes the singular points of type
E(λ).

Lemma 3. Let ω(µ) be a smooth family of positive C∞-quadratic dif-
ferential forms with parameter µ ∈ IRk. Assume that ω(0) has a rank-2
singular point p0. Let U ⊂M be a neighborhood of p0, and let V ⊂ IRk be
a neighborhood of the origin such that Sing(ω(µ)) ∩U = {p(µ)}, for every
µ ∈ V , where p(µ) is the C∞ continuation of the singular point p0 = p(0)
in U .

Let (x, y) : (U, p0) → (IR2, (0, 0)) be a local chart such that

(x, y)∗(ω0) = (a1x+ a2y +M1(x, y))dy2 + 2(b1x+ b2y +M2(x, y))dxdy
+(c1x+ c2y +M3(x, y))dx2 ,

with Mi(x, y) = O((x2 + y2)1/2), for i = 1, 2, 3.
There exists a local chart φ : (U0 × V0, (p0, 0)) → (IR2 × IRk, (0, 0, 0)) of

the form φ(p, µ) = (x(p, µ), y(p, µ), µ), with φ(p, 0) = (x(p), y(p), 0) for all
p ∈ U and φ(p(µ), µ) = (0, 0, µ) for all µ ∈ V , such that: if (x, y)∗(ω(µ)) =
a(x, y, µ)dy2 + b(x, y, µ)dxdy + c(x, y, µ)dx2,
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(a) and if a1, a2 6= 0 and a1 + 2b2 = 0, then

a(x, y, µ) = a1x+ a2y +M1(x, y, µ) ,

b(x, y, µ) = (b1 +B1(µ))x− 1
2
a1y +M2(x, y, µ) and

c(x, y, µ) = (c1 + C1(µ))x+ (c2 + C2(µ))y +M3(x, y, µ),

with B1(0) = C1(0) = C2(0) = 0;
(b) and if b1, 2b1 + c2 6= 0 and c1 = 0, then

a(x, y, µ) = a1x+ (a2 +A2(µ))y +M1(x, y, µ) ,
b(x, y, µ) = b1x+ (b2 +B2(µ))y +M2(x, y, µ) and
c(x, y, µ) = (c2 + C2(µ))y +M3(x, y, µ) ,

with A2(0) = B2(0) = C2(0) = 0 ,

where in both cases Mk(0, 0, µ) = ∂Mk

∂x (0, 0, µ) = ∂Mk

∂y (0, 0, µ) = 0, for all
(k, µ) in {1, 2, 3} × V0.

Proof. According to the preceding lemma and taking U × V smaller
if necessary, we may assume that U × V is open and that there exists a
local chart φ : (U × V, (p0, 0)) → (IR2 × IRk, (0, 0, 0)) of the form φ(p, µ) =
(x(p, µ), y(p, µ), µ) such that φ(p, 0) = (x(p), y(p), 0) for every p ∈ U and
φ(p(µ), µ) = (0, 0, µ), for every µ ∈ V .

Thus if (x, y)∗(ω(µ)) = a(x, y, µ)dy2 +b(x, y, µ)dxdy+c(x, y, µ)dx2, then

a(x, y, µ) = a1(µ)x+ a2(µ)y +M1(x, y, µ) ,
b(x, y, µ) = b1(µ)x+ b2(µ)y +M2(x, y, µ) , and
c(x, y, µ) = c1(µ)x+ c2(µ)y +M3(x, y, µ) ,

with

(a1, b1, c1)(µ) = (a1, b1, c1) + (A1, B1, C1)(µ) ,

(a2, b2, c2)(µ) = (a2, b2, c2) + (A2, B2, C2)(µ) ,

and

Mk(0, 0, µ) =
∂Mk

∂x
(0, 0, µ) =

∂Mk

∂y
(0, 0, µ) = 0 ,

for all (k, µ) ∈ {1, 2, 3} × V .
Let A(α,β,γ,δ,µ) : IR2 → IR2 be the family of linear isomorphisms with

parameter (α, β, γ, δ, µ) ∈ IR4 × V such that if A = A(α,β,γ,δ,µ), then its
inverse is given by

A−1(x, y, µ) = ((1 + α)x+ βy, γx+ (1 + δ)y, µ).
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Under these conditions, we have that φ̄ = A ◦ φ is of the form φ̄(p, µ) =
(u(p, µ), v(p, µ), µ). Therefore, if (u, v)∗(ω(µ)) = ā(u, v, µ)dv2+b̄(u, v, µ)dudv
+ c̄(u, v, µ)du2, then

ā(u, v, µ) = ā1(µ)u+ ā2(µ)v + M̄1(u, v, µ)
b̄(u, v, µ) = b̄1(µ)u+ b̄2(µ)v + M̄2(u, v, µ)
c̄(u, v, µ) = c̄1(µ)u+ c̄2(µ)v + M̄3(u, v, µ)

where

ā1(µ) = (1 + δ)2[(1 + α)a1(µ) + γa2(µ)]+
2β(1 + δ)[(1 + α)b1(µ) + γb2(µ)]+
β2[(1 + α)c1(µ) + γc2(µ)] ,

ā2(µ) = (1 + δ)2[βa1(µ) + (1 + δ)a2(µ)]+
2β(1 + δ)[βb1(µ) + (1 + δ)b2(µ)]+
β2[βc1(µ) + (1 + δ)c2(µ)] ,

b̄1(µ) = γ(1 + δ)[(1 + α)a1(µ) + γa2(µ)]+
[(1 + α)(1 + δ) + βγ][(1 + α)b1(µ) + γb2(µ)]+
(1 + α)β[(1 + α)c1(µ) + γc2(µ)] ,

b̄2(µ) = γ(1 + δ)[βa1(µ) + (1 + δ)a2(µ)]+
[(1 + α)(1 + δ) + βγ][(βb1(µ) + (1 + δ)b2(µ)]+
(1 + α)β[βc1(µ) + (1 + δ)c2(µ)] ,

c̄1(µ) = γ2[(1 + α)a1(µ) + γa2(µ)]+
2(1 + α)γ[(1 + α)b1(µ) + γb2(µ)]+
(1 + α)2[(1 + α)c1(µ) + γc2(µ)] and

c̄2(µ) = γ2[βa1(µ) + (1 + δ)a2(µ)]+
2(1 + α)γ[βb1(µ) + (1 + δ)b2(µ)]+
(1 + α)2[βc1(µ) + (1 + δ)c2(µ)] .

Remark that

(ā1, b̄1, c̄1)(0) = (a1, b1, c1)

and that

(ā2, b̄2, c̄2)(0) = (a2, b2, c2) .

Case a1, a2 6= 0 and a1 + 2b2 = 0. We first assume a1(µ) + 2b2(µ) ≡ 0,
for all µ, with | µ | small. We leave this condition invariant by setting
β ≡ γ ≡ 0, and we obtain

ā1(µ) = (1 + α)(1 + δ)2(a1 +A1(µ))
ā2(µ) = (1 + δ)3(a2 +A2(µ)) .

By the implicit function theorem, there exist α = α(µ) and δ = δ(µ), with
α(0) = δ(0) = 0, such that ā2(µ) ≡ a2 and ā1(µ) ≡ a1. The latter identity
implies b̄2(µ) ≡ −1

2a1.
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Now if a1(µ) + 2b2(µ) 6≡ 0, setting α ≡ β ≡ δ ≡ 0 we obtain

ā1(µ) + 2b̄2(µ) = A1(µ) + 2B2(µ) + 3γ[a2 +A2(µ)]

and the result follows from the implicit function theorem.

Case b1, 2b1 + c2 6= 0 and c1 = 0. We first assume c1(µ) ≡ 0, for all µ,
with | µ | small. We leave this condition invariant by setting γ ≡ 0, and
we obtain

ā1(µ) = (1 + δ)2(1 + α)a1(µ) + 2β(1 + δ)(1 + α)b1(µ)
b̄1(µ) = (1 + α)2(1 + δ)b1(µ) .

We next set α ≡ 0. Then according to the implicit function theorem, there
exist δ = δ(µ) and β = β(µ), with δ(0) = β(0) = 0, such that ā1(µ) ≡ a1

and b̄1(µ) ≡ b1.
Now if c1(µ) 6≡ 0, setting α ≡ β ≡ δ ≡ 0 we obtain

c̄1(µ) = γ3a2(µ) + γ2(a1(µ) + 2b2(µ)) + γ(2b1(µ) + c2(µ)) + c1(µ)

and the result follows from the implicit function theorem. The proof is now
complete.

3. NORMAL FORMS

Let

ω(µ) = a(x, y, µ)dy2 + 2b(x, y, µ)dxdy + c(x, y, µ)dx2

be an arbitrary smooth family, with parameter µ ∈ IRk, such that ω0 =
ω(0) has a type C singular point at the origin.

We may assume

a(x, y, µ) = −x+ y +M1(x, y, µ) ,

b(x, y, µ) = b1(µ)x+
1
2
y +M2(x, y, µ) ,

c(x, y, µ) = c1(µ)x+ d1(µ)y +M3(x, y, µ) ,

with b1(0) = c1(0) = d1(0) = 0, Mi(x, y, µ) = O(| (x, y) |), for i = 1, 2, 3.

Theorem 4. Let k be an integer greater than or equal to two. Then
there exists a local chart φ : (U0 × V0, ((0, 0), 0)) → (IR2 × IRk, ((0, 0), 0))
of the form φ(p, µ) = (u(p, µ), v(p, µ), µ), with φ(p, 0) = (u(p), v(p), 0) for
all p ∈ U0, and φ((0, 0), µ) = (0, 0, µ), for all µ ∈ V0. Moreover, such a φ
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may be found such that if (u, v)∗(ω(µ)) = ã(u, v, µ)dv2 + b̃(u, v, µ)dudv +
c(u, v, µ)du2, then

ã(u, v, µ) = −u+ v +N1(u, v, µ) ,

b̃(u, v, µ) = b1(µ)u+
1
2
v + b2(µ)u2 + · · ·+ bk(µ)uk +N2(u, v, µ) , and

c̃(u, v, µ) = c1(µ)u+ d1(µ)v + c2(µ)u2 + · · ·+ ck(µ)uk +N3(u, v, µ) ,

with b1(0) = c1(0) = d1(0) = 0, N1(u, v, µ) = O(| (u, v) |), and Ni(u, v, µ)
= O(| (u, v) |k), for i = 2, 3.

Proof. Let 2 ≤ m ≤ k be an integer. Let

pm(x, y, µ) = Am,0(µ)xm +Am−1,1(µ)xm−1y + · · ·+A0,m(µ)ym ,

qm(x, y, µ) = Bm,0(µ)xm +Bm−1,1(µ)xm−1y + · · ·+B0,m(µ)ym , and
rm(x, y, µ) = Cm,0(µ)xm + Cm−1,1(µ)xm−1y + · · ·+ C0,m(µ)ym

be the homogeneous parts of degree m of the maps a(., ., µ), b(., ., µ), and
c(., ., µ), respectively.

In a neighborhood of the origin, we consider a change of coordinates of
the form (x, y, µ) = (u, v, µ) + (α(x, y, µ), β(x, y, µ), 0), with

α(x, y, µ) = αm,0(µ)xm + αm−1,1(µ)xm−1y + · · ·+ α0,m(µ)ym and
β(x, y, µ) = βm,0(µ)xm + βm−1,1(µ)xm−1y + · · ·+ β0,m(µ)ym

whose coefficients we will determine. Now, as in the proof of Proposition
3.1 of [5], if

(u, v)∗(w(µ)) = ã(u, v, µ)dv2 + 2b̃(u, v, µ)dudv + c̃(u, v, µ)du2 ,

then

(ã, b̃, c̃)(u, v, µ) = (−u+ v, b1(µ)u+
1
2
v, c1(µ)u+ d1(µ)v) +

(p2, q2, r2)(u, v, µ) + · · ·+ (pm, qm, rm)(u, v, µ) +
adm(α(u, v, µ), β(u, v, µ)) + (P̃m, Q̃m, R̃m)(u, v, µ) ,

with P̃m(u, v, µ), Q̃m(u, v, µ), R̃m(u, v, µ) = O(| (u, v) |m).
Therefore, the terms of degree less than m are preserved, whereas the

resulting ones of degree m are

(p̃m, q̃m, r̃m)(u, v, µ) = (pm, qm, rm)(u, v, µ) + adm(α(u, v, µ), β(u, v, µ)) ,
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where adm = (ad1
m, ad

2
m, ad

3
m) with

ad2
m(α(u, v, µ), β(u, v, µ)) = b1(µ)α(µ) +

1
2
β(µ) + (−u+ v)

∂β

∂u
+

(b1(µ)u+
1
2
v)(

∂α

∂u
+
∂β

∂v
) +

(c1(µ)u+ d1(µ)v)
∂α

∂v
,

ad3
m(α(u, v, µ), β(u, v, µ)) = c1(µ)α(µ) + d1(µ)β(µ) +

(2b1(µ)u+ v)
∂β

∂u
+ 2(c1µu+ d1(µ)v)

∂α

∂u
·

Let

q̃m(u, v, µ) =
m∑

i=0

B̃m−i,i(µ)um−ivi , r̃m(u, v, µ) =
m∑

i=0

C̃m−i,i(µ)um−ivi

be the homogeneous parts of degree m of the maps b̃(., ., µ), c̃(., ., µ), re-
spectively.

A simple calculation yields

ad2
m(µ)(um−ivi, 0) = ((1 +m− i)b1(µ) + id1(µ))um−ivi +

1
2
(m− i)um−i−1vi+1 + ic1(µ)um−i+1vi−1 and

ad2
m(µ)(0, um−ivi) = ib1(µ)um−i+1vi−1 + (

1
2
−m+

3
2
i)um−ivi +

(m− i)um−i−1vi+1 ,

which imply that, for i = 1, · · · ,m− 1,

B̃m−i,i(µ) = Bm−i,i(µ) +
1
2
(m+ 1− i)αm+1−i,i−1(µ) +

((m+ 1− i)b1(µ) + id1(µ))αm−i,i(µ) +
(i+ 1)c1(µ)αm−i−1,i+1(µ) + (m+ 1− i)βm+1−i,i−1(µ) +
1
2
(1 + 3i− 2m)βm−i,i(µ) + (i+ 1)b1(µ)βm−i−1,i+1(µ) ,

as well as that

B̃m,0(µ) = Bm,0(µ) + (1 +m)b1(µ)αm,0(µ) + c1(µ)αm−1,1(µ) +
1
2
(1− 2m)βm,0(µ) + b1(µ)βm−1,1(µ) ,
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B̃0,m(µ) = B0,m(µ) +
1
2
α1,m−1(µ) + (b1(µ) +md1(µ))α0,m(µ) +

β1,m−1(µ) +
1
2
(1 +m)β0,m(µ) .

Also,

ad3
m(µ)(um−ivi, 0) = (1 + 2(m− i))c1(µ)um−ivi +

2(m− i)d1(µ)um−i−1vi+1 and
ad3

m(µ)(0, um−ivi) = (d1(µ) + 2(m− i)b1(µ))um−ivi +
(m− i)um−i−1vi+1 ,

which imply that, for i = 1, · · · ,m,

C̃m−i,i(µ) = Cm−i,i(µ) + (1 + 2(m− i))c1(µ)αm−i,i(µ) +
2(m− i+ 1)d1(µ)αm−i+1,i−1(µ) + (d1(µ) +
2(m− i)b1(µ))βm−i,i(µ) + (m+ 1− i)βm+1−i,i−1(µ) ,

as well as that

C̃m,0(µ) = Cm,0(µ) + (1 + 2m)c1(µ)αm,0(µ) + (d1(µ) + 2mb1(µ))βm,0(µ) .

We set α0,m = β0,m = 0. Then

B̃m−1,1

B̃m−2,2

...
B̃1,m−1

B̃0,m

C̃m−1,1

C̃m−2,2

...
C̃1,m−1

C̃0,m



(µ) =



Bm−1,1

Bm−2,2

...
B1,m−1

B0,m

Cm−1,1

Cm−2,2

...
C1,m−1

C0,m


(µ) +M(µ)



αm,0

αm−1,1

...
α2,m−2

α1,m−1

βm,0

βm−1,1

...
β2,m−2

β1,m−1


(µ) ,

with

M(µ) =
(
F (µ) G(µ)
H(µ) J(µ)

)
,

where F (µ), G(µ),H(µ), and J(µ) are smooth m×m matrices such that

J(0) = Diagonal{m,m− 1, · · · , 2, 1}, H(0) = 0 and F (0) =
1
2
J(0) .
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Therefore, the matrix M(µ) is nonsingular for all | µ | small, and the
coefficients αm−i,i(µ) and βm−i,i(µ) , for i = 0, · · · , m− 1, may be chosen
in such a way that B̃m−j,j(µ) and C̃m−j,j(µ) vanish in a neighborhood of
µ = 0, for all j = 1, · · · , m .

Remark 5. Consider ã, b̃, c̃ as in Theorem 4. Let k be an integer greater
than one such that c1(0) = · · · = ck−1(0) = 0 and ck(0) 6= 0. Since the
quadratic differential form is positive, k is odd and ck(0) > 0. Hence,
assuming b̃(u, 0) or c̃(u, 0) is nonflat at u = 0, there exists an integer k ≥ 2
such that b1(0) = · · · = bk−1(0) = 0, c1(0) = · · · = c2k−2(0) = 0, and
(bk(0), c2k−1(0)) 6= (0, 0) with c2k−1(0) ≥ 0 .

4. FINITE DETERMINACY

In the next Theorem, we show that the local configuration around a
nonflat type C singular point is topologically equivalent to the one shown
in Figure 4.

Theorem 6. Let k ≥ 2 be an integer, and let (b0, c0) 6= (0, 0) be a pair of
real numbers, with c0 ≥ 0. Consider a positive quadratic differential form
ω = a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 such that

a(x, y) = −x+ y +M1(x, y)

b(x, y) =
1
2
y + b0x

k +M2(x, y)

c(x, y) = c0x
2k−1 +M3(x, y) ,

with M1(x, y) = O(| (x, y) |), M2(x, y) = O(| (x, y) |k) and M3(x, y) =
O(| (x, y) |2k−1). Then the local phase portrait around the origin of the
foliations associated with ω is topologically equivalent to the one shown in
Figure 4.

The proof of Theorem 4.1 is consequence of the next two lemmas. We
use the blowing-up technique (compare [3, Section 4]).

Now since the roots of the polynomial

S(ω) = da(0,0)(x, y)y2 + 2db(0,0)(x, y)xy + da(0,0)(x, y)x2

= y3

correspond to the possible directions of asymptotic convergence to the sin-
gular point for the leaves of the foliations f1(ω) and f2(ω), we only need
to make a blowing-up in the x-direction.
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Lemma 7. Consider the blowing-up (x, y) = G(u, v) = (u, ujv), for 1 ≤
j ≤ k. Then (u, v)∗(ω) = u2j−1ωj, with

ωj = u2Aj(u, v)dv2 + 2uBj(u, v)dudv + Cj(u, v)du2.

Moreover:

a) If j < k, then the unique singular point of ωj over the line u = 0 is
the origin and (B2

j −AjCj)(0, 0) = 0.

b) If j = k, then Sing(wk) ∩ {u = 0} = {(0, v1), (0, v2)}, with v1 ≤
0 ≤ v2 and v1 < v2. Further, (B2

k − AkCk)(0, vi) > 0 for i = 1, 2. If k is
even (resp. odd), then the local configuration of (u, v)∗(ω) at the origin is
topologically equivalent to the one shown in Figure 5 (resp. Figure 6).
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Figure 5.
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Figure 6.
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Proof. As in [5, Section 3], if G(u, v) = (u, ujv), then in the new
coordinates we have that ω takes the form

(u, v)∗(ω) = (du dv)
(
c̃(u, v) b̃(u, v)
b̃(u, v) ã(u, v)

) (
du
dv

)
,

with (
c̃(u, v) b̃(u, v)
b̃(u, v) ã(u, v)

)
= DG(u, v)TM(G(u, v))DG(u, v)

where DG(u, v) is the Jacobian matrix of G in (u, v), its transpose matrix
is DG(u, v)T , and M(u, v) is the matrix

M(u, v) =
(
c(u, v) b(u, v)
b(u, v) a(u, v)

)
.

Therefore,

ã(u, v) = u2ja(u, ujv),
b̃(u, v) = ju2j−1va(u, ujv) + ujb(u, ujv) , and
c̃(u, v) = j2u2j−2v2a(u, ujv) + 2juj−1vb(u, ujv) + c(u, ujv) ,

which imply

Aj(u, v) = −1 + uj−1v + uN1(u, v),

Bj(u, v) = b0u
k−j + (j − 1

2
)v + juj−1v2 + uN2(u, v),

Cj(u, v) = j(1− j)v2 + 2jb0uk−jv + c0u
2(k−j) + uj−1v3 + uN3(u, v).

Thus, for j < k, we have that Cj(0, v) = 0 if and only if v = 0. Since
Bj(0, 0) = 0, part a) of the lemma follows.

Concerning b), we assume j = k. The singular points of ωk over the line
u = 0 are (0, v1) and (0, v2), where v1, v2 are the solutions of the equation

k(1− k)v2 + 2jb0v + c0 = 0 .

If v1 < v2, we have that v1 ≤ 0 ≤ v2 and that

Bk(0, vi) =

{
b0 if vi = 0

−k2v2
i +c0

2kvi
if vi 6= 0 ,

hence Bk(0, v1) > 0 > Bk(0, v2).
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In order to obtain the local configuration around the origin, we consider
for i = 1, 2 the vector fields

Xi(u, v) = (u2Ak(u, v),−uBk(u, v) + (−1)i
√
u2Hk(u, v) ),

Yi(u, v) = (uAk(u, v),−Bk(u, v) + (−1)i
√
Hk(u, v) ), and

Zi(u, v) = (u(Bk(u, v) + (−1)i
√
Hk(u, v)),−Ck(u, v) ) ,

where Hk(u, v) = Bk(u, v)2 −Ak(u, v)Ck(u, v).
Recall that, for i = 1, 2, the vector field Xi is tangent to the foliation

fi(ω1) and that the vector field Yi is tangent to the vector field Zi. However,
Yi is tangent to Xi only for u positive and, for u negative, Yi is tangent to
X3−i.

Since

(−Bk −
√
Hk)(0, v1) < 0

(−Bk −
√
Hk)(0, v2) = 0

(−Bk +
√
Hk)(0, v1) = 0

(−Bk +
√
Hk)(0, v2) > 0 ,

we have:

• The point (0, v1) is regular for Y1; it is singular for Y2 and a hyperbolic
saddle of Z2 .
• The point (0, v2) is regular for Y2; it is singular for Y1 and a hyperbolic

saddle of Z1.

Therefore, the local phase portraits of the vector fields Yi and Xi around
the line u = 0 are
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Figure 7.
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Finally, since the determinant of the Jacobian matrix of the change of
coordinates is det J(u, v) = uk and (u, v)∗(ω) = u2k−1ωk, the phase por-
trait of the foliation fi((u, v)∗(ω)), for i = 1, 2, is topologically equivalent
to the phase portrait of Yi (resp. Xi) if k is even (resp. if k is odd) (cf. [3,
Remark 4.1]); the proof of part b) now follows.

To complete our analysis we must perform, for each 1 ≤ j ≤ k, the
blowing-up (x, y) = (uv, ujvj+1), and study what occurs at the origin.

Lemma 8. Let (x, y) = (uv, uj−1vj), with 2 ≤ j ≤ k. Then we have
(u, v)∗(ω) = u2j−3v2j−1ωj, with ωj = u2Aj(u, v)dv2 + 2uvBj(u, v)dudv +
v2Cj(u, v)du2, and the local configurations of the foliations associated to
(u, v)∗(ω) around the origin are topologically equivalent to the one shown
in Figure 8 for j = 2, and for j > 2, to the one in Figure 9.
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Figure 8.
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Figure 9.

Proof. We have that

Aj(u, v) = j(1− j) +N1(u, v),

Bj(u, v) = j(2− j)− 1
2

+N2(u, v) , and

Cj(u, v) = (j − 1)(2− j) + uj−2vj−1 +N3(u, v) ,
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with Ni(0, 0) = 0 for i = 1, 2, 3, and N3(0, v) = 0.
The corresponding vector fields become

Xi(u, v) = (u2Aj(u, v),−uvBj(u, v) + (−1)i
√
u2v2Hj(u, v) ) ,

Yi(u, v) = (uAj(u, v), v(−Bj(u, v) + (−1)i
√
Hj(u, v)) ) , and

Zi(u, v) = (u(Bj(u, v) + (−1)i
√
Hj(u, v)),−vCj(u, v) ) ,

where Hj = B2
j −AjCj .

Since (B2
j −AjCj)(0, 0) = 1

4 , we have that

DY1(0, 0) =
(
j(1− j) 0

0 j(j − 2)

)
and that

DY2(0, 0) =
(
j(1− j) 0

0 j(j − 2) + 1

)
.

Then if j > 2, the origin is a hyperbolic saddle for Y1 and Y2, and the local
configuration around the origin of (u, v)∗(ω) is topologically equivalent to
the one shown in Figure 9.

When j = 2, the origin is a hyberbolic saddle for Y2; it is a saddle-node
for Y1 and Z1, with

DZ1(0, 0) =
(
−1 0
0 0

)
and Z1(0, v) = (0,−v2) .

Therefore, the local phase portrait around the origin of the vector fields Yi

and Xi are

��� ��� ��� ���

Figure 10.
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Finally, since (u, v)∗(ω) = uv3ω2, and since the determinant of the Ja-
cobian matrix of the change of coordinates is det J(u, v) = uv2, we have
that the local configuration around the origin of (u, v)∗(ω) is topologically
equivalent to the one shown in Figure 8. The proof is now complete.

Proof of Theorem 4.1. The proof is a direct consequence of the two previous
lemmas. For example, for the foliation f1(ω), after k blowing-ups, for k
even as well as for k odd, we obtain Figure 11 below. The proof is now
complete.

����� �����

Figure 11.

5. VERSAL UNFOLDINGS

In this section, we find a versal unfolding of a nonflat type C singular
point. We first recall the corresponding definitions.

5.1. Definitions

Definition 9. Two smooth families ( ωµ ) and (ω̃µ) of positive
C∞-quadratic differential forms with (the same) parameter µ ∈ IRk are
called C0–equivalent (over the identity) if there exist homeomorphisms
hµ : IR2 → IR2 such that, for each µ ∈ IRk, we have that hµ is a C0–
equivalence between the forms ωµ and ω̃µ.

Remark 10. For local families around the origin of IR2 × IRk, we
impose the conditions that h0(0, 0) = (0, 0), that hµ(x, y) only be defined
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for ((x, y), µ) which belongs to a neighborhood V ×W of ((0, 0), 0) in
IR2 × IRk, and that {(hµ(x, y), µ)/((x, y), µ) ∈ V ×W} be a neighborhood
of ((0, 0), 0).

Definition 11. Let U ⊂ IRk and V ⊂ IRl be neighborhoods of the
origin. If φ : (V, 0) → (U, 0) is a smooth map and ( ωµ ) a smooth family of
positive C∞-quadratic differential forms with parameter µ ∈ U , the family
(υα) = ( ωφ(α) ), with parameter α ∈ V , is called family C∞ –induced by
φ.

Recall that an unfolding of a smooth positive quadratic differential form
ω is any smooth family ωµ of positive C∞-quadratic differential forms
with ω0 = ω; we thus have the following Definition.

Definition 12. An unfolding ωµ of ω0 is called a versal unfolding of
ω0 if all unfoldings of ω0 are C0–equivalent to an unfolding C∞ –induced
from ωµ .

5.2. Main Result

Theorem 13. A versal unfolding of a nonflat type C singular point is

(−x+ y)dy2 + (λ1x+ y + 2x3)dxdy + (λ2(x− y) + λ3(λ1x+ y) + x3)dx2 ,

with λ1 > −1 and λ2 − λ2
3 ≥ 0.

Proof. Let ω(µ) be any smooth family with parameter µ ∈ IRk such
that ω(0) has a nonflat type C singular point at the origin.

We may assume

ω(µ) = a(x, y, µ)dy2 + 2b(x, y, µ)dxdy + c(x, y, µ)dx2 ,

with

a(x, y, µ) = −x+ y +N1(x, y, µ) ,

b(x, y, µ) = b1(µ)x+
1
2
y + b2(µ)x2 + b3(µ)x3 + · · ·+ bk(µ)xk

+N2(x, y, µ) ,
c(x, y, µ) = c1(µ)x+ d1(µ)y + c2(µ)x2 + c3(µ)x3 + · · ·+ c2k−1(µ)x2k−1

+N3(x, y, µ) ,

and b1(0) = · · · = bk−1(0) = 0, c1(0) = · · · = c2k−2(0) = 0, d1(0) = 0,
(bk, c2k−1)(0) = (b0, c0) 6= (0, 0), N1(x, y, µ) = O(| (x, y) |), and N2(x, y, µ)
= O(| (x, y) |k) , N3(x, y, µ) = O(| (x, y) |2k−1).

Consider the map ∆(µ) = 4(2b1(µ)+d1(µ))3+27c1(µ)2. Then the origin
is a singular point of ω(µ) of type
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a) D1 , if ∆(µ) > 0 ;
b) D2 , if ∆(µ) < 0 ;
c) D12 , if ∆(µ) = 0 and c1(µ) 6= 0 ;
d) D̃1 , if (2b1 + d1, c1)(µ) = (0, 0) and b1(µ) 6= 0 ;
e) C , if (b1, c1, d1)(µ) = (0, 0, 0) .

This implies that our family is C0–equivalent to the family

ω̃(µ) = (−x+y)dy2 +2(b1(µ)x+
1
2
y+x3)dxdy+(c1(µ)x+d1(µ)y+x3)dx2 .

Finally, if

φ(µ) = (2b1(µ),
c1(µ)− 2b1(µ)d1(µ)

1 + 2b1(µ)
,
c1(µ) + d1(µ)

1 + 2b1(µ)
)

and

υ(λ1, λ2, λ3) = (−x+ y)dy2 + (λ1x+ y + 2x3)dxdy +
(λ2(x− y) + λ3(λ1x+ y) + x3)dx2 ,

then the unfolding induced by φ from the family υ(λ1, λ2, λ3), λ1, λ2,
λ3 ∈ IR is precisely the family ω̃(µ). The proof is now complete.

The corresponding bifurcation diagram is shown in Figure 12.
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Figure 12.
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