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Generically, the set of points along which two non-singular vector fields
on the three-sphere are positively (resp. negatively) collinear form a link. We
prove that the two vector fields are homotopic if and only if the linking number
of those links is zero. We use this criterion to give a new proof of a result of
Yano: every non-singular vector field on the three-sphere is homotopic to a
non-singular Morse-Smale vector field.
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INTRODUCTION

The study of surface homeomorphisms up to isotopy, following Nielsen
and Thurston, has led to many exciting results. For example, the work
of Franks on area-preserving diffeomorphisms of the annulus, of Handel
about fixed point of planar homeomorphisms, of Bestvina & Handel for
surface homeomorphisms, of Gambaudo, van Strien & Tresser and Llibre
& MacKay about the forcing problem . . . The cornerstone of this theory is
the classification result of Thurston (see [13]). In [9], MacKay proposes to
study the same problem for non-singular vector fields on three-dimensional
manifolds. The main goal of this project is to understand the relation-
ship between the geometry of the manifold (in the sense of Thurston, [12])
and the possible vector fields in each homotopy class (homotopy via non-
singular vector fields). The problem of homotopy of non-singular vector
fields has already been studied by (among others) Asimov, Yano, Gompf
and G. Kuperberg [1, 17, 6, 7]. In the last two papers, Gompf and G.
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Kuperberg give a complete classification of non-singular vector fields on a
three-manifold in term of Euler class, spin structure, . . . Those studies were
done using a trivialization of the tangent bundle of the manifold; it seems
that they lead to very poor results on the dynamical point of view.

One key point of the programme of Thurston is to find a ”simplest rep-
resentative” in each isotopy class. For three-dimensional vector fields, as
remarked by MacKay, the notion of ”simplest” is still unclear for one could
not expect to define this notion with respect to the topological equivalence
of vector fields. Indeed, the work of K. Kuperberg on the Seifert conjecture
(see [8, 5]) implies that each non-singular vector field on a three-manifold
is homotopic to a vector field without periodic orbit. However, it is still
interesting to know if there is an homotopy to a well-known class of vector
fields (e.g. Morse-Smale, volume preserving, pseudo-Anosov flows, . . . ).
One early work in this direction, after the work of Asimov, is the work
of Yano, [17], where conditions for the existence of a Morse-Smale vector
field in a given homotopy class on a graph manifold (or on a manifold that
admits a Morse-Smale vector field) are given in term of Euler class.

The situation on the three-sphere is in many ways simpler than on other
three-manifolds. We will study the problem of homotopy on the sphere, ex-
pecting to generalise our results and methods to arbitrary three-manifolds.

One purpose of this paper is to give a criterion to decide whether two
non-singular vector fields are homotopic or not, directly computable from
the vector fields. Generically, the set of points on which two non-singular
vector fields X and Y on the three-sphere are positively (resp. negatively)
collinear form a link C+ (resp. C−). The linking number of C+ with C−
is well-defined up to its sign.

Criterion: the vector fields X and Y are homotopic if and only if the
absolute linking number of C+ with C− is zero.

We show that the absolute linking number of C+ and C− is the distance
in homotopy classes between X and Y . Lee Rudolph pointed out that this
result is also proved in [11, Proposition 1.1].

We expect this criterion to be extended to arbitrary three-manifold, using
previous work of Kuperberg and Gompf, [7, 6] and the extension of Hopf’s
ideas by Pontryagin.

The last part of the paper is devoted to the study of Morse-Smale vector
fields on the three-sphere. We show that every vector field on the sphere is
homotopic to a Morse-Smale one, using the criterion. For that purpose, it
is sufficient to find a non-singular Morse-Smale vector field in each homo-
topy class. This has already been done by Yano, [17], using action groupe
arguments. Our construction is more geometric than the construction of
Yano. The dynamic of the Morse-Smale vector fields is given by a vector
field on the two-sphere and is known explicitly.



HOMOTOPY CLASSES OF VECTOR FIELDS 363

1. DEFINITIONS AND FIRST RESULTS
1.1. Hopf fibration and Hopf invariant

In this section we give the classical definition of the Hopf fibration of the
3-sphere, we give an alternative way to obtain this fibration and finally, we
recall the definition of the Hopf invariant.

We consider S3 as the unit sphere of R4 with the standard metric:
S3 = {(x1, x2, x3, x4)| x2

1 + x2
2 + x2

3 + x2
4 = 1}. Identifying R4 with C2, by

(z1, z2) = (x1 + ix2, x3 + ix4), the sphere S3 is the set {|z1|2 + |z2|2 = 1}.
Each complex line of C2 intersects S3 along a great circle. The union of
those circles is the 3-sphere and if two of those circles have a non-empty
intersection, they are equal. We obtain a fibration from S3 to CP (1) ' S2

which associate to each point of the 3-sphere the direction of the corre-
sponding complex line in CP (1).

Definition 1. The map described above, H : S3 → S2, is called the
Hopf fibration.

Let us now identify R4 with H, the field of quaternions. With this iden-
tification, the canonical basis of R4 is denoted by {1, i, j, k}. We identify
R · 1 with R and Ri + Rj + Rk with R3; this subset of H is called the
set of pure quaternions. One can write every quaternion q = R(q) + P(q)
with R(q) ∈ R and P(q) ∈ R3, and define the conjugate q = R(q)−P(q).
We obtain the canonical norm on R4: ‖q‖ =

√
qq.

The 3-sphere is the set S3 = {q| ‖q‖ = 1} and it has a multiplicative
group structure, induced by the multiplication of quaternions. For a given
point s in S3, one can consider the inner product: ρ′s : S3 → S3, defined
by ρ′s(q) = sqs−1.

Proposition 2 ([2], Corollary 8.9.3). Let s be a point of S3, the map
ρ′s leaves R3 invariant and its restriction ρs = ρ′s|R3 belongs to SO(3).

Moreover the map s 7→ ρs from S3 to SO(3) is a surjective group homo-
morphism with kernel {±1}. In particular, SO(3) and RP (3) are isomor-
phic.

Let ? be a point of S2, the unit sphere of R3, we define the map

f : S3 → S2

s 7→ ρs(?).

Lemma 3. For ? = (0, 1, 0, 0), f is the Hopf fibration defined above.

Proof. Let y be a point of S2, we have to prove that f−1(y) is a circle
included in a complex line of C2. Proposition 8.9.4 in [2] asserts that given
s = α + t in S3, with t ∈ R3 \ 0 and α ∈ R, the axis of the rotation ρs is
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the line Rt, and its angle θ is given by the relation tan θ
2 = ‖t‖

|α| if α 6= 0,
and θ = π if α = 0.

For u ∈ [0, 2π], let us define cu = (cos(u), sin(u), 0, 0) a point in S3. The
rotations associated to cu by the Proposition 2 are the only ones keeping ?
invariant.

Let us denote y = (0, a, b, c), with a2 + b2 + c2 = 1 and let sy be the
point of S3 with coordinates (a, 0, c,−b). We have ρsy

(y) = ?, therefore
ρcu

◦ ρsy
(y) = ρcu·sy

(y) = ?. Hence, we get

f−1(y) = {cu · sy, u ∈ [0, 2π]}.

Let u ∈ [0, 2π], cu · sy = (a cos(u), a sin(u), b sin(u) + c cos(u), c sin(u) −
b cos(u)), therefore, f−1(y) is circle, invariant by the antipodal map and
included in the complex line of slope c−ib

a .

Remark 4. For a different choice of point ?, we obtain a new map
f ′ : S3 → S2, and there exists a diffeomorphism g of the 2-sphere such that
f ′ = g ◦H (the map g could be the restriction of an isometry of R3 to S2).

Let f be a smooth map from S3 to S2 (we assume that the spheres are
oriented) and let y and z be two regular values of f . The sets f−1(y) and
f−1(z) are oriented links (a link is disjoint union of knots) and the linking
number: link(f−1(y), f−1(z)) does not depend on the choice of y and z.

Definition 5. The Hopf invariant of f is H(f) = link(f−1(y), f−1(z)).

The Hopf invariant does not depend on the choice of f in its homotopy
class.

Example 6. The Hopf invariant of the Hopf fibration is 1.
Let f be a map from S3 to S2, h : S3 → S3 and g : S2 → S2 we have the

equalities:

H(f ◦ h) = deg(h)H(f)

H(g ◦ f) = deg2(g)H(f).

We deduce from the second formula that the Hopf invariant of any map
f as above (see before lemma 3) is 1.

1.2. Combings and framings
Let us define some geometrical objects on an arbitrary compact oriented

3-manifold M . In this section we follow [15, 7, 6, 4]. We denote by TM
the tangent bundle of M .

Definition 7. A combing of M is a section of the tangent bundle TM .
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A framing of M is a trivialization of the tangent bundle into a product:
TM ' M ×R3.

A combing is a non-singular vector field on M . As every compact ori-
ented 3-manifold has a vanishing Euler characteristic, there always exists
a combing on M . Every combing is homotopic to a unitary combing for a
given Riemannian metric on M .

A framing consists of three linearly independent combings whose ori-
entation gives the orientation of the manifold. We remark that with a
Riemannian metric on M , two linearly independent combings are sufficient
to define a framing and every framing is homotopic to an orthonormal
framing. It is more difficult to show that there always exists a framing on
a three-manifold. We will restrict ourselves to the case M = S3 which is a
Lie group, therefore it is easy to see that S3 admits a framing. The next
lemma is classical.

Lemma 8. On the three-sphere, one can always complete a combing into
a framing. Moreover, two such framings are homotopic through framings
which complete the initial combing.

Therefore, to each non-singular vector field X on S3, we associate a
framing τ

X
which is well-defined up to homotopy.

Let X and Y be two unitary non-singular vector fields on the three-
sphere and denote by τ

X
and τ

Y
respectively some associated orthonormal

framings. We have the following.

• With respect to τ
X

, the vector field Y is a map Yτ
X

from S3 to S2, we
can associate to this map its Hopf invariant: HX(Y );
• at each point x in S3, we can associate a unique linear map of SO(3),

denoted by (τ
X
− τ

Y
)(x), mapping X(x) to Y (x) and the two others comb-

ings of τ
X

to the combings of τ
Y
. The map (τ

X
− τ

Y
) from S3 to SO(3)

has a well-defined degree: [τ
X
− τ

Y
].

Remark 9. As SO(3) is homeomorphic to RP (3) and S3 is simply
connected, [τ

X
− τ

Y
] is an even integer (see proof of lemma 10).

Lemma 10. The quantity HX gives an isomorphism between the ho-
motopy classes of non-singular vector fields on the three-sphere and the
integers.

Two non-singular vector fields on the three-sphere, X and Y , are homo-
topic if and only if HX(Y ) = 0.

Moreover, we have the formula: HX(Y ) = 1
2 [τ

X
− τ

Y
].

Proof. Let X be a non-singular vector field on S3 and τ
X

an associated
framing. The homotopy class of a non-singular vector field Y is uniquely
determined by the homotopy class of Yτ

X
: S3 → S2. The Hopf invariant
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gives an isomorphism between π3(S2) and Z then it gives an isomorphism
between the homotopy classes of non-singular vector fields on S3 and Z.

A continuous map from S3 to S2 is homotopic to a constant if and only
if its Hopf invariant is zero. The map Xτ

X
is constant, then X and Y are

homotopic if and only if HX(Y ) = 0.
Let us prove now the last formula. Let ? be a point of S2 and define the

map M : SO(3) → S2 which associate to a matrix A the point A(?) of S2.
Moreover, denote by p : S3 → RP (3) ' SO(3) the standard projection.
With Xτ

X
≡ ?, there exists f : S3 → S3 such that we have the following

commutative diagram.

S3

f

||xx
xx

xx
xx

x
τ

X
−τ

Y

��

Y // S2

S3
p // SO(3)

M

<<xxxxxxxx

The projection p is of degree two then the integer [τ
X
− τ

Y
] is even and

the degree of f is exactly 1
2 [τ

X
− τ

Y
].

Using this diagram, we see that Y = M ◦ p ◦ f then HX(Y ) = H(M ◦
p ◦ f) = deg(f)H(M ◦ p). The map M ◦ p is exactly the map constructed
in section 1.1 and, H(M ◦ p) = H(H) = 1. Therefore we have HX(Y ) =
deg(f) = 1

2 [τ
X
− τ

Y
].

Remark 11. The isomorphism we obtain is not well-defined, it depends
on the choice of a preferred combing (or framing) on the three-sphere.

Remark 12. If we exchange X and Y we get: HX(Y ) = −HY (X).
If X, Y and Z are three non-singular vector fields on S3, we have the

following equality, for x in S3: (τ
X
− τ

Y
)(x) · (τ

Y
− τ

Z
)(x) = (τ

X
− τ

Z
)(x).

Hence, [τ
X
− τ

Y
]+ [τ

Y
− τ

Z
] = [τ

X
− τ

Z
] and HX(Y )+HY (Z) = HX(Z).

These remarks lead to the following definition.

Definition 13. The distance in homotopy classes between X and Y ,
denoted by D(X, Y ), is the absolute value |HX(Y )| = |HY (X)|.

Following Theorem 5.4 and Theorem A.4 of [3], a diffeomorphism of the
three-sphere is either isotopic to the identity (orientation-preserving) or
isotopic to R(x1, x2, x3, x4) = (x1, x2, x3,−x4) (orientation-reversing). We
will see in section 1.4 that the vector fieldH+, tangent to the Hopf fibration,
satisfies D(H+, R?(H+)) = 1.
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Definition 14. We associate to a vector field X on the three-sphere its
homotopy number:

I(X) =
(D(X,H+) +D(X, R?(H+))− 1)

2
.

It is clear that D(X, Y ) = D(g?(X), g?(Y )) for any vector fields X and
Y , and for any diffeomorphism g. Therefore we have the formula I(X) =
I(R?(X)). The next lemma is straightforward.

Lemma 15. The homotopy number gives a well-defined isomorphism be-
tween the homotopy classes (up to diffeomorphism) of non-singular vector
fields on the three-sphere and the natural integers N.

In particular, we get the formula: D(X, R?(X)) = 2I(X) + 1 and we
obtain that there is a unique homotopy class (up to diffeomorphism) such
that D(X, R?(X)) = 1.

Remark 16. If we pay attention to the homotopy classes of vector
fields up to diffeomorphism, the not well-defined isomorphism of remark 11
become the well-defined isomorphism of lemma 15.

1.3. Intrinsic definition of D(X, Y )
Given two vector fields X and Y , it is not easy to compute HX(Y ),

because we have to complete X into a framing and to express Y in the
coordinates of this framing. We will investigate another way, more direct,
to compute D(X, Y ).

Let X and Y be two non-singular vector fields on the three-sphere. We
denote by C+ (resp. C−) the set of points of S3 where X and Y are
positively (resp. negatively) collinear.

C+ = {x ∈ S3/X(x) = λY (x) with λ > 0}

C− = {x ∈ S3/X(x) = λY (x) with λ < 0}

Lemma 17. Generically, C+ and C− are embedded links in S3 (possibly
empty).

Proof. The vector fields X and Y are homotopic to unitary vector fields
for a given Riemannian metric. Fixing any orthonormal framing τ of S3,
the vector fields X and Y give a map (X, Y ) from S3 to S2 × S2. The
diagonal D+ (resp. the anti-diagonal D−) of S2×S2 is the subset of points
of the form (x, x) (resp. (x,−x)) with x in S2. The set C+ (resp. C−) is
the reciprocal image (X, Y )−1(D+) (resp. (X, Y )−1(D−)).
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The spheres D+ and D− are codimension 2 submanifolds of S2 × S2.
The transversality theorem asserts that a small perturbation of every map
g : S3 → S2×S2 is transverse to D+ and D−. Therefore a small perturba-
tion of X and Y makes the map (X, Y ) transverse to D+ and D−. Hence
(X, Y )−1(D+) and (X, Y )−1(D−) are either empty or compact submani-
folds of S3, of codimension 2. Then if C+ and C− are non-empty, they are
disjoint unions of embedded circles in S3.

Remark 18. Lemma 17 is true on arbitrary three-manifold.
Although we made use of a framing in the previous proof, the sets C+

and C− do not depend on a framing (indeed one can prove lemma 17 by a
local argument).

Let M be a compact three-manifold, and f and g be two maps from M
to S2 ⊂ R3. If the points f(x) and g(x) are never antipodal, that is if the
set {x ∈ M | f(x) = −g(x)} is empty or alternatively if ‖f(x)− g(x)‖ < 2π
for all x in S2, then f and g are homotopic. This leads to the following
lemma.

Lemma 19. If either C+ or C− is empty, then X and Y are homotopic.

Remark 20. The previous argument shows that a perturbation of a
vector field leading to a vector field in the same homotopy class can be
very large.

Our goal is to compute the linking number between C+ and C−. For
that purpose, we need to give them an orientation; in fact we will give two
possible orientations of those links.

Let us denote by C0 one component of C+, and let D be a small disc,
transverse to X and Y at a point x of C0. The vector X(x) gives an
orientation of this disc. We consider the Gauss map from D to S2 (with
a fixed orientation) which associates to a point of D the direction of the
vector field Y at this point. We oriente C0 such that the orientation of
D and the orientation of C0 at x gives the orientation of S3 if the Gauss
map is orientation-preserving or gives the opposite of the orientation of S3

otherwise. This choice of orientation does not depend on the choice of D
or of x. We oriente this way each component of C+ and C−.

If we take the Gauss map associated to X instead, we obtain the opposite
orientation on all the components. We recall that the linking number with
the empty set is zero.

Definition 21. The absolute linking number of C+ and C− is the
absolute value of the linking number of C+ and C− with one of the above
orientations: |link(C+, C−)|.
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Remark 22. If C+ and C− are linked by only two components (one
for each link), any orientation of those links would give the same linking
number, up to sign.

If C+ and C− are orbits of X (and of Y ), all their components are
oriented as orbits of X (or of Y ).

The intrinsic definition of D(X, Y ) is given by the following.

Lemma 23. The distance in homotopy classes between two vector fields
X and Y is given by the absolute linking number of C+ and C−.

|link(C+, C−)| = D(X, Y )

Proof. Let τ
X

be a framing associated to X, and Yτ
X

be the vector field
Y expressed in this framing. Let ? be the point of S2 such that Xτ

X
≡ ?.

We can perturb Y , staying in the same homotopy class, such that ? and
−? are regular values of Yτ

X
.

As C+ is Y −1
τ

X
(?) and C− is Y −1

τ
X

(−?), we can orientate C+ and C− with
respect to the orientation given by the map Y −1

τ
X

and the orientation of S3

and S2. This orientation fits with one of the orientations of C+ and C−
given above, depending on the orientation of S2. By the definition of the
Hopf invariant, we have link(C+, C−) = HX(Y ).

The choice for the orientation of C+ and C− is not canonical, as well
as the choice of orientation of S2, we obtain the result: |link(C+, C−)| =
D(X, Y ).

We obtain the criterion stated in the introduction as a corollary of the
previous lemma and lemma 10.

1.4. First examples
In this section, we use our criterion to show that H+ and R?(H+) are

in adjacent homotopy classes, we give examples of vector fields homotopic
to H+ and R?(H+) and finally we give a construction of a vector field in
each homotopy class.

Let H : S3 → S2 be the Hopf fibration. Choosing an orientation on S3

and on S2 gives a natural orientation of the fibres. We obtain this way a
vector field H+, tangent to the fibres of H, such that the linking number
between two different orbits is +1. The equations of this vector field are:
H+(z1, z2) = (iz1, iz2) if we identifie R4 with C2 as in the first section.

In a similar way, we define H− such that the linking number of two
orbits is −1: H−(z1, z2) = (iz1, iz2). We remark that H− = R?(H+). The
following lemma was proved with an other method in [15].

Lemma 24. The two vector fields above, H+ and H−, lie in adjacent
homotopy classes: D(H+,H−) = 1.
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H+ H−

Figure 1. H+ and H−

Proof. The vector fields H+ and H− are positively tangents along C+,
the unit circle of C×{0} in C2 and they are negatively tangent along C−,
the unit circle of {0} ×C. The circles C+ and C− form a Hopf-link, their
absolute linking number is 1. Using lemma 23, we have D(H+,H−) = 1.

As a corollary, we obtain that I(H+) = I(H−) = 0.

Definition 25. Given two relatively prime numbers p 6= 0 and q > 0,
a (p, q)−Seifert fibration of the three-sphere is a map from S3 ⊂ C2 to
S2 ' CP (1) defined by:

Sp,q : (z1, z2) 7→
[
zq
2

zp
1

]

A Seifert fibration is a continuous map from the three-sphere to the two-
sphere, such that the reciprocal image of each point is a circle. Each of
those circles are (p, q)−knots of the tori Ta,b = {(z1, z2)| |z1| = a, |z2| = b}
except the reciprocal image of the North and the South poles which are the
cores of those tori and give a Hopf link. Let us denote by Hp,q the unitary
vector field tangent to the fibres of the (p, q)−Seifert fibration. We remark
that H1,1 = H+ and H−1,1 = H−.

Lemma 26 ([15], corollary 2.4). The vector fields Hp,q are homotopic
to H+ if p is positive, and to H− if p is negative.

Proof. This is an easy corollary of lemma 19. For p > 0, the vector
fields Hp,q and H+ are never negatively tangents and it is the same for
Hp,q and H− whenever p < 0.
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Let us consider the link consisting of two regular fibres L1 and L2 of a
(p, q)−Seifert fibration. The absolute linking number between L1 and L2 is
the product |pq|. We will construct a vector field Xn for each n in N \ {0}
which is positively tangent to Hn,1 along L1 and negatively tangent to
Hn,1 along L2 (and the vector fields are transverse everywhere else). Such
a vector field satisfies: D(Xn,Hn,1) = D(Xn,H+) = n.

Lemma 27. There exists such a vector field Xn for each n in N \ {0}.

Proof. Let τ be a trivialization of the tangent bundle of the three-sphere
such that H1,n is a constant map from S3 to S2. Let T1 (resp. T2) be a
tubular neighbourhood of L1 (resp. L2), and define Xn(x) = Hn,1(x) if
x ∈ L1 and Xn(x) = −Hn,1(x) if x ∈ L2. Let ? be the point of S2 such
that Hn,1 ≡ ? and let † denote a different point of S2.

Let γt, t ∈ [0, 1] be a smooth path on the two-sphere, such that γ−1(?) =
{0}, γ−1(†) = {1} and γt 6= −? for all t. The solid torus T1 is diffeomorphic
to D2 × S1, where D2 = {(r, θ), 0 ≤ r ≤ 1, θ ∈ [0, 2π]}. We define Xn on
D2 × ω by Xn(r, θ, ω) = γ(r). Therefore, Xn is equal to H1,n on L1, it is
equal to † on ∂T1, and is transverse to H1,n in T1 \ L1.

Similarly, we define Xn on T2 such that Xn ≡ † on the boundary of T2.
Therefore one can complete Xn outside T1 ∪ T2 by Xn|S3\(T1∪T2) ≡ †.

With a small perturbation of Xn along the boundaries of T1 and T2,
we can assume that Xn is smooth, always transverse to Hn,1 except on
L1 and L2 where the vector field are positively and negatively tangents,
respectively.

We have therefore a vector field in each homotopy class: I(Xn) = n− 1
for n > 0.

2. HOMOTOPY TO MORSE-SMALE FLOWS

In this section, we will exhibit a non-singular Morse-Smale vector field in
each homotopy class of vector fields on the sphere. This result has already
been obtained by Yano, [17] after previous work of Wilson, [16]. Yano
constructs a non-singular Morse-Smale vector field Xn such that I(Xn) = n
for each n, and Xn has exactly 2n periodic orbits. The main interest of
our construction is that all the vector fields (except those in the homotopy
class of H+ and H−) have exactly 4 periodic orbits. This shows therefore
that the number of those orbits is not relevant (as suspected in [17, Remark
5.2]). Using our criterion, we see that their linking number is important.

Definition 28. A non-singular vector field is a Morse-Smale vector
field if its flow has

• a finite set of periodic orbits which are all hyperbolic,



372 E. DUFRAINE

• the intersections of the invariant manifolds of those orbits are transver-
sal and,
• its nonwandering set consists entirely of those orbits.

A periodic orbit of a Morse-Smale vector field is either an attractor (index
0), a saddle (index 1) or a repellor (index 2). Following [10, 1], Wada, [14],
has classified all the indexed links that are realisable as the set of periodic
orbits of a non-singular Morse-Smale flow on the three-sphere.

We present here a well-known construction of a Morse-Smale flow in the
homotopy class of H+, for ours will be similar in other homotopy classes.

Let X0 be the S −N−gradient vector field pictured in Figure 2.

N

S

Figure 2. Phase portrait of X0

The Hopf fibration H is smooth on S3 and each point of S2 is a regular
value of H. We can lift X0 to a vector field of S3, orthogonal to the orbits
of H+. The vector field X0 +H+ is a Morse-Smale vector field around the
(0, 2)−Hopf link, homotopic to H+. The image by R of this vector field
gives a Morse-Smale vector field homotopic to H−.

We will construct explicitly a Morse-Smale vector field in each homo-
topy class on the three-sphere. We remark that our vector fields can be ob-
tained using once the fifth or the fourth Wada operation on the (0, 2)−Hopf
link, [14]. We will make use of the following remark in our construction.

Remark 29. For a given non-singular Morse-Smale vector field, it is
always possible to change the orientation of a periodic orbit, staying in the
Morse-Smale class.

The (p, q)−Seifert fibration, Sp,q, is smooth on the three-sphere, except
along the singular fibres LN and LS : Sp,q is smooth on S−1

p,q (S2 \ {N,S})
where N and S stand for the North and South poles respectively. Every
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point of S2, different from N and S is a regular value for Sp,q. This fibration
maps the tori Ta,b on circles parallel to the equateur of S2.

Let X1 be a vector field with two sources (at the poles), one sink and
one saddle (that lie on the same parallel), X1 is tangent to this circle (2
heteroclinic orbits) and transverse to every other parallel circles. The phase
portrait of X1 is given on Figure 3.

N

S

Figure 3. Phase portrait of X1

Let p be a strictly positive integer and let us consider the following vector
field Yp on the three-sphere. For each point in S3 \ {LN , LS}, one can lift
the vector field X1 on the three-sphere, to a vector field A orthogonal to
the fibres of Sp,1. We complete A into a smooth vector field on S3 by
A|LN

= A|LS
= 0. We define Yp(x) = Hp,1(x) + A(x). The vector field

Yp is a Morse-Smale vector field with 4 periodic orbits (corresponding to
the singularities of X1), it is positively collinear to Hp,1 along those orbits,
and transverse everywhere else. In fact, it is transverse to every tori Ta,b

expect the invariant one. On the invariant torus, it is not difficult to make
it transverse to Hp,1 (on the complement of the periodic orbits).

Let M2p+1 be a Morse-Smale vector field, with the same periodic orbits
as Yp but with the opposite orientation along the orbit of index 0. A slight
modification of Yp leads to M2p+1, keeping the transversality with Hp,1 on
the complement of the periodic orbits. Similarly, let M2p+2 be a Morse-
Smale vector field, with the same periodic orbits as M2p+1 but with the
opposite orientation along the orbit corresponding to the North pole of the
two-sphere.
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L

L2

1

Figure 4. The vector fieldMn in S3 and on the invariant torus

As p is strictly positive, we obtain a vector field Mn for each n ≥ 3.
We define M2 as follow (the idea is to do the same with ”H0,1”): it has 4
periodic orbits, two repellors form a Hopf link, one saddle and one attractor
that are linked to one of the repellors, with linking number 1 for the saddle
and -1 for the attractor. The saddle and the attractor are on an invariant
torus Ta,b, such that Ta,b is the union of the stable manifold of the saddle
and the attractor (in particular, the saddle and the attractor are not linked
together).

Remark 30. The vector field M2 is obtained using the fourth Wada
operation, [14], and is similar to the vector field constructed by Yano in [17].

All the other vector fields, Mn with n ≥ 3 are obtained using once the
fifth Wada operation.

Finally, we define M1 to be the Morse-Smale vector field constructed
around the (0, 2)−Hopf link (see the begining of this section).

Lemma 31. For n ≥ 1, the vector field Mn belongs to the (n−1)th class
of homotopy of non-singular vector fields on the three-sphere: for n ≥ 1,
we have I(Mn) = n− 1.

Proof. The lemma is true for n = 1 by construction.
If n is equal to 2, M2 is tangent to every Hp,q with p and q strictly

positive, along a Hopf link and two loops on the invariant torus, parallel
to the periodic orbits of M2. On one of those loops, Hp,q and M2 are
negatively tangent. Then we obtain: |link(C+, C−)| = 1 and I(M2) = 1.

If n ≥ 3 is an odd integer, n = 2p + 1, the set C+, where Mn and Hp,1

are positively collinear, is the union of the orbits of Mn of index 1 and 2,
namely LN , LS and L1. The set C− is the orbit of index 0: L0. We oriente
those orbits with respect to Hp,1 and we obtain that:

• link(L0, L1) = link(L0, LS) = p,
• link(L0, LN ) = 1.
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Therefore, with this orientation, link(C−, C+) = 2p + 1. By lemma 23 and
lemma 26, we have D(Mn,H+) = D(Mn,Hp,1) = 2p + 1.

Similarly, if n ≥ 4 is even, n = 2p + 2, we have: C+ is the union of LS

and L1, and C− is the union of LN and L0. Once again, we oriente those
orbits with respect to Hp,1 and we obtain that:

• link(LS , L0) = link(L1, L0) = p,
• link(L1, LN ) = link(LS , LN ) = 1.

We obtain that D(Mn,H+) = 2p + 2.
Using the same technique and the picture of Mn on the invariant torus,

we obtain that D(M2p+1,H−) = 2p and D(M2p,H−) = 2p+1. Therefore,
for each p > 0, we have I(M2p+1) = 2p = n− 1 and I(M2p+2) = 2p+1 =
n− 1, then for each n ≥ 1, I(Mn) = n− 1.
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