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We consider in this article, a lopsided quintic polynomial vector field
X = —x% + y% + Zi+j:5(aiszyjf%)' We first compute the first non-
zero derivative of the return map r — L(r,e). We study then the necessary
and sufficient conditions for the existence of a center.
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1. INTRODUCTION
Let X be a polynomial vector field of the form

0 0 .0 0
- < Ctad 9 ted Y
X x@y y8m+ E (a;jz'y ax—i—b”wy 8y)7 (1)

2<i+j<d

where a;;,b;; € R. Given such a vector field X corresponding to a fixed
set of values (a;;, b;j), there exists a neighborhood U of the origin O € R?

* We wish to express our sincerely thanks to Pr. J.P. Francoise for his advices during
the period of this work.
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on which the flow of X, that is the solution of the differential system

dx dy i
LByt Y ey, Boor Y ned @

2<itj<d 2<i+5<d

exists for all initial values. We can furthermore assume that there is a first
return mapping L defined on U. Given an initial point (r,0), » > 0, the
solution of (2) with initial data (r,0) intersects again for the first time the
x-axis at some point (L(r),0), L(r) > 0. We denote by ¥ = {(x,0) € U}
the transversal section, by transversality, the mapping L is analytic and it
has a Taylor series

Lry=r+Lyr®4 -+ Lprt+... (3)

The coefficients Ly, k > 2, are called the Lyapunov-Poincaré coefficients.
The sign of the first non-vanishing Lyapunov-Poincaré coefficient deter-
mines the stability of the origin. Let Ly be this coefficient. If Ly > 0,
then close to the origin, the orbits spirals away and 0 is unstable. On the
contrary, if Lio < 0, then 0 is stable.

We now assume that (a;;, b;;) varies slightly from a fixed value. In some
fixed neighborhood of the origin, the first return mapping L of X relative
to X still exists and it now depends of the coefficients (a;j,b;;). We write
now

L(r) =+ La(aij, bij) 1° + - + Li(aj, big) r* +--- (4)

A direct computation shows in fact that the coefficients L are polynomials
in the coefficients (a,b) = (a;j;,b;;) and thus they are globally defined.
The first polynomial Lgg(a,b) which is non-zero determines the stability
of the origin. The vanishing of the non-zero coefficients Ly (a,b) gives the
algebraic expressions which are points of a real algebraic manifold or of a
center manifold.

We use the algorithm introduced by J.P. Francoise in [7] for a polynomial
vector field

0 0 0 0
X=z 8y y6x+ Zda”xy n + by’ a9 —) (5)

in order to compute the first non-zero coefficients for a homogeneous per-
turbative part. The implementation of this algorithm was developed in [9].
We introduce a parameter € and consider the 1-parameter family

(9 .0 .
Xe = (aijx'y’ — + bijr'y’ —).
dy y@x l_;(i @ity 3x+bﬂ;y 31/) (6)
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The vector fields X, has a first return mapping L(r, e) of the form
L(r,e) =r+eLa(r,a;j, bij) + -+ + " Li(r,aij, bij) + -+ (7)

The algorithm allows to compute the first non-zero derivative of L(r, ¢) rel-
atively to . This coincides with the coefficients Lk(aij, bij) in the case of
a homogeneous perturbative part. We use the computer algebra methods
presented in [9] in order to do our computations for the polynomial vector
field (5), where d =5 and b;; = 0.

The problem of a center for the polynomial vector fields (1) consists in
finding all the necessary and sufficient conditions bearing on the coefficients
(@ij,bij), in order that all orbits in a neighborhood of the origin be peri-
odic. For the polynomial vector field (5), these conditions have been found
by H. Dulac [5] for d = 2 and by Sibirski [16] for d = 3. In [8], it was shown
that the algorithm introduced in [7] leads to the usual conditions of Dulac
for d = 2 and of Sibirski for d = 3. For d = 3 see also the works of N.G.
Lloyd and his co-workers [3, 12, 13, 1]. For general references to Hilbert’s
16" problem and to the center problem, see [2, 4, 6, 10, 14, 16, 17, 18].

In this work, we determine all the conditions on a polynomial vector field

0 0 .0
= —0r— — ot —
X x@y + y@x + Z}jzs(a”x y 83;) (8)

and its corresponding differential system

P y+i+jZ:5aijx v, P 9)

such that the origin is a center. We refer to the vector field (8) as the [op-
sided quintic vector field and the system (9) as the lopsided quintic system.
For a lopsided quartic vector field see [15].This kind of systems have been
studied for the first time by Kukles (1944), when i 4 j < 3, for example see
[11].

2. THE ALGORITHM OF THE MULTIPLICITY OF THE
FIRST RETURN MAPPING

We use the algorithm introduced in [7] for the lopsided quintic vector
field (8). We include here in general a short description of it. We introduce
the complex coordinates z = %(x +v-1y),z = %(w —+/—1y), and the
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1-form w = ix (dx Ady). With this new notation, instead of the polynomial
vector field X in (1), we use

w=dH +w; =dH + Z (Aijzjéidz + /_lijéjzidé), (10)
2<i+j<d

whose complex coefficients A;; are easily related to the real coeflicients
(@ij,b;5) of (1). The function H is H : (2,2) — H(z,2z) = 2% .

We introduce next a real parameter € and the 1-parameter family of 1-forms
we = dH + cw;. The corresponding 1-parameter family of vector fields X,
of (6) such that ix,_(dz A dy) = w. has a first return mapping L(r, €)

L(T’, 5) =7+ SLQ(’)", Aijw[lij) —+ . +5kLk(7“, Aijagij) + - (11)

We define the multiplicity in e of the first return mapping L(r, ) as the
first ko so that L, (r, A;j, A;;) is not identically (in r) zero. At this point,
it is convenient to choose r = H|y as the coordinate on the transversal
section X.

There is a formula due to H. Poincaré which gives

Ll(r, Aijvgij) = — / w1 -
H=r2

Assume that Ly (r, A;;, 4;;) = 0 (as a function of r) then there is a polyno-
mial g; such that

wp = gldH + dR;

and we get

if Li(r,Aij, Aij) = 0 (as a function of r), then there is a polynomial gj
such that

Jr—1w1 = grdH + dRy,
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and then

Ly (r, Ay, Agj) = (—1)F! / w1 -
H=r2
The consequence is that we can compute the first non-zero coefficient
Li(r, Aij, Aij) by building the sequence of polynomials g1,..., gk, ... , at
each step k we have the 1-form gyw;. We first compute the differential
d(grw1) = F*(z, 2) dz A dz, next we split the polynomial F*(z, z) into two

parts
Z F’c 27 4 Z

i#]
We find that

Ly (r, A”,A = ZFlkrl ,

next we compute d(gx,1wi1) and we repeat the process.

3. THE LOPSIDED QUINTIC VECTOR FIELD
For the lopsided quintic vector field (8), we have the 1-form

w=ix(dz Ady) = 2dy — ydz = (xdx + ydy) — ( Z aijxiyj)dy .

By using the complex coordinates (z = %(x—h/—ly), z= %(x— V-1y)),
we get (zdx + ydy) = d(zZ) = dH, and

Z aijr'y’)dy = Z A2 Fd(2—72) Z A2 2 ) dz+( Z A;;7°20)d

i+j=5 i+j=5 i+75=5 i+j=5
where
Asp = _Qo5ta41 _ ;a50—a32— a23+al4
Ay = 5ags —3a41 _‘_2—5%0-"—&32 a23+3a14
Agg = —2a41—10ag5 __ 10&50+2a32+2a23+2l114
8 8
Ags = 2a41+10a05 _ 10@50+20«32+2023+2a14
8
— *5a05+3a41 —5asotaszzs—az3+3aia
A14 - 8 + { 8 )
Apr = agstaa1 4 850—032— a23+aiq
05 8 8 :
So we have
Aso = —Aos
Ay = —Ay (12)

A32 = _A23-
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We refer to (12) as the lopsided quintic conditions.
So, after this change of coordinates, for the 1-parameter family

0 0 0
Xe=—a—+yz—+ > i
xa -I—ya +Z]5 a,Ja:ya) (13)
we have
we = dH + ¢ (Adz + Bdz) (14)

with the lopsided quintic conditions (12), where H = 2z, A= > A;;2'%,
i+j=5
and B = Z Aijiizj.
i+j=5
We have used many times the following theorem [9] in order to do the
successive elimination of parameters and to produce center conditions:

THEOREM 1. The first non-zero Lyapunov-Poincaré polynomial L;[j] is

of the form L;i[j] = P;[j] — P;[j] = 2i S(Pi[5]).

By using the procedures dvg, swap, and purge [9] on MAPLE with the
lopsided quintic conditions (12), we get the Lyapunov-Poincaré polynomi-
als:

LEMMA 2. The non-zero Lyapunov-Poincaré polynomials for the lop-
sided quintic vector field (8) are L;[2i] = 2i S (P;[2i]), fori =1,2,3,4,5,
where

Pi[2] = 34,3,
Py[4] = 5A05A14 + 5Ag3A14,

Ps[6] =
2l Ap5 A35— *A05A23A14 - *A05A23A05 +10 A05A23A14 - *A05A14A05 -
7A14A05 — 56423 A23A14 — *A23A14A14 + 2 A23A14 - 35A23A237

Py[8] = SL A3 A1y — 22514%4/135 + 288 Ap5 Az Ags Ary + 1822 A3 Ags —
129 A23A23A05A14 + 7A14A05A23A05 - TA14A05A23A14 -
423142414 3+54A23A23+162A14A23A23— A14A14A23 A05A23A14+

25 224)142 Aps Agz + A 4A05 A§3A05A14 +
1053A05A 1A+ 2 0} 2 ABs A14Aos + 1867A14A23A05+ i A14A14A23
2L Ags A3 Ags + 1P A3 Ags Aos — 251 A2, Agz Ary — 2B AZ3 A14 Ans,

P5L4101]1 — 10859 4,, A3, 57513(5;9 Ags A4 A1y Ags Ags+ 38223 A% Apg Agg Ags +
i 2 A2 A05A23A05 + (1)182031423/1 Aoz A1g + 2%68 A05A23A05A14 -
1134 A00A14A 5819A A23A14— 1175339A00A14A 13013140514?41400
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76813 42 12 | 126731 72 2, + 17367 12, A2 95843 43
S813 42 [, A3+ 1206781 A2, A, A2, 4 ATSOT 12 A2 Ay~ 9593 A3 1, 4,
19635A05A14A _ 223179A24A A23 = 334807A1 42,43, +
12 9 14433

102751 79 1188571125 41229
A 4A23A05A23 - A05A23A14A2 — 229 Ag5 A33 A1y Agy +

2010791 55 250 10 | 27dls3 2, LT 42
Aps A14A33A05 — A05Aod 08 A2 A3  Ags + i44A23A14

1152

3J429 A05A05A2313' 301924841 A14A14A23 819009 A05A14A23
209 Ags A3, Aoz + 10]59589A14A 3433 + 3é45A14A23A14 2035 43, Aog Ags —
21813A14A 4A _ 2 117A3 A05A23 _ lggl A2 A2 AO 143A%5A(2)5A14

2%% ' A33A00A14 + 96 A00A23A - 1584A23A14A23 21% A24A0"A%4 +
2088 £ 400 A5 A2, 1;12789 A24A23A05A14 — 12142, 43, 26609142314 03 +
13007819A14A23A23A14 + 89T 3A05A23A14A23A14 +

1152

16T0T Ags Apz Ags Azg Arg + 11§997A2 A23A14A23 + 13;83/10514051423/114 +
2 A5 As Ay Ars + BET A%4A23A05A14 — 33850 Ap5A33A14A0s —

13321A24A3 — 924A23A23 + A14A14A05A05 + E A%3A05 -l— 1 A34A

We have computed the other Lyapunov-Poincaré polynomials L;[2i], for i =
6,7,8,9,10. Their expressions are too lengthy to be reproduced here, the in-
terested reader can get it by http://www-math.unice.fr/~ salih/lopquint.ps.

Remark 3. Sometimes, the action of the group of rotation allows to
assume that A;; € R with ¢ — 5+ 1 # 0. But, for the lopsided quintic
vector field this is not possible, since this vector field is not invariant under
the action of the group of rotation.

4. CENTER CONDITIONS FOR A LOPSIDED QUINTIC
VECTOR FIELD

In this case, we have w. = dH + ew with the lopsided quintic conditions
(12), where H = zZ, and w = (Ei+j:5 Aijziij) dz+ (Zi+j:5 Aijéizj> dz.

THEOREM 4. The origin of dH + cw is a center if and only if all the
coefficients A;; with i+ j =5 are real.

Proof. First, we suppose that the coefficients A;; with ¢4+j = 5 are real.
The Lyapunov-Poincaré coeflicients are polynomials in A;;, so they are real
expressions. In this case, by using theorem 1, we get L;[2i] = $(P;[24]) = 0,
for ¢ > 1. This implies that the origin of dH + cw is a center.

Now, if the origin of w. is a center, we have to show that all the coeffi-
cients A;; with ¢ + j = 5 are real. The first non-zero Lyapunov-Poincaré
polynomial is

L1[2] = S(P1[2]) = S(3423) = —33(As),
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the vanishing of L1[2] gives Ass € R, we suppose that Aoz = «, where
a € R. The second non-zero Lyapunov-Poincaré polynomial is

L2[4} = %(Pg [4]) = %(51‘_1051414 + 504/_114) = 5%(1414(/_105 — a))

1 If A;4 = 0, the third non-zero Lyapunov-Poincaré polynomial is
L3[6} = ——u J(Aog,).
1.1 If a =0, we get that L4[8] = 0 and
N 55 2en
Ls[10] = (P5[10]) = 151405 |3 (Aos)-

The vanishing of L5[10] gives that Ags € R, so all the coefficients A;; with
i+ j =5 are real.

1.2 If $(Ags) = 0 but a # 0. In this case also we have Agps € R, so all the
coefficients A;; with ¢ + j = 5 are real.

2 If A14 # O, in this case L2[4} = 5%(1414(1405 — Ol)) =0 giVGS that A05 =
BA14 + a, where § € R. Now the computation of L3[6] gives that

L3[6] = S(v1 43, + 12 A14),

where ¥ = a(g —1) and ¢y = M — Bl Al + %2 - 3("225. Now we
study the following cases:

2.1 If ¢p; = 0 and v # 0, we have L3[6] = 128 (A14). So L3[6] = 0 implies
that A14 € R, and all the coeflicients A;; with ¢ 4 j = 5 are real.

2.2 If 11 = 199 = 0, we have the following particular cases:

2.2.1 If @ = § = 0, the computation shows that L1[2] = La[4] = L3[6] =
L,4[8] =0 and

11
Ls[10] = E|‘A14H2S(Al4)~

We have Aj4 # 0, so L5[10] = 0 implies that Aj4 € R\ {0}. In this case
we have Agz3 = Apgs =0 and A1y € R \ {0}

2.2.2If § =3 and @ = 0, we have L3[6] = 0. The computation of L4[8]
and L5[10] gives

Lale] = S(PL0]) = 5[ Aws S (43y)

and

1182
L5[10] = (P5[10]) = T||A14||23(A14)~
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Since we have A4 # 0, the vanishing of Ls[10] gives A;4 € R\ {0}.
therefore in this case we have Asg = 0, Ags = 3414 and A4 € R\ {Q}
2.3 (general case) If 11 # 0 and ¢2 # 0, when we substitute A4 in

_ — 2
L3[6] = P5[6] — P3[6] by A14 = %7 we get

7

Ls[6] = ——
3 6A2,

(A7, = |AulP) (c11 A3, + c12A1s + c13),

where c11 = 2a(8 — 3), c12 = 28°||A14]|? — 683||A14]|*> + 302 — 98a? and
C13 = 20(@”1414”2 — 604”1414”2.
Now the computation of L4[8], L5[10], and Lg[12] gives:

3

Ly[8] = —5
4A3,

(A7) = |AwlP) (c21 ALy + c22AY, + c23AT, + CoaArs + 25),

c21 = 20,
Cog = 3002 — 55a2ﬂ + 2ﬁHA14H2 + 15a252,
cog = 750 3—570° —a| A14]|?+33a]| Ara||* —5503% (| A14 > +1506° || A2,

coq = || A14]|*c20,

and
o5 = || A1al[*c21.
11
L5[10] = — o (A%, — | A14]®) (c31 AT, + c30AY + c33 AT, + c3aAra+e35),
72043,
where

c31 = 22563a? — 655202 + 2454302 — 16020072,

32 = 2532032 || A14]|?a — 15894 A14||Pa + 17555203 — 13083|| Ar4|?a —
34856003 + 6903 + 4505 A14 2o — 18174 A14]%Bar,

C33 — —259470(2||A14H2 + 220553”1414”2042 — 20811”1414”252052 —
65084 || A4 + 225[| A14||*B° — 2133903 A14]|%a® — T086a* — 45||A14)* —
215432 Ara||* + 785%|| Ara||* — 158795 Ava|[* — 279080,

C34 — 253252||A14||4a—15894a||A14||4—|—1755||A14||20z352—1300¢B3||A14||4—
348560&36”1414”2 + 69”1414”20(3 + 45054”1414”40[ — 18174ﬂ||A14||4OL,

and
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c35 = —650232|| A4|* — 16020|| A14]|*® + 2454|| A14)|* B
+22533|| A14]|*a2.

13

Lg[12) = ————
4320A%,

7
(AL = 1Aul>) O e AT,
=1

where
cs1 = —110160802 + 256803%a2 + 531002,

a2 = —34483503 — 253340620 + 5136033|| A14 |2 — 57816 Ar4]|2a —
168750%a% — 22032062 A14]|2cx + 829614 80> + 130932(| A 14| B,

C43 = 727512”1414 ||2ﬁ2042 +6022140* — 33681602 ||A14H2 + 7783262 HA14 H4 —
60211180 + 2697393 A14][2a% — 578163|| A14|* — 3375084|| A14)/202 —
222235(3%|| A4]|?0? 4 256805 A14l|* + 40956%a* — 1101605% || A14]*,

Ca4 =
21399905 — 168753 || A14*a + 133254 A14|20 82 — 315180|| A4]|23303 +
82206 A14]|2a® 4 3110554|| Aya]|4er — 3173798 A1a|| e — 149805805 —
7642208 || A14|* + 49677603 B|| A1a|* + 577314 3%(| A1al|*a — 59967cx|| Ara |,

cas = 6022140 A14]|? + 409532 || A14]|2a* — 336816 A14]|*a? —
602111a||A14]|?8 — 33750(| A14]|* B*a? — 22223533|| A14]|*a® +
72751202 32| A14]|* + 269739 A14|* Ba? + 7783262 Ar4|¢ +
256806*(| A14]|® — 578165 A14]|® — 11016037 || A14|°,

Cag = —2203203%|| Ar4]|Sr — 1687503 33| A14||* — 57816|| A14)|Sa +
513606°|| A14]|®a + 82961403 A14||* o — 25334057 || Ar4[|*a® +
1309320[6“1414“6 — 344835||A14||4a3,

and
Cq7 — —110160||A14||6ﬁ042 + 25680||A14||6ﬁ20(2 + 53100||A14||6a2.

Remark 5. We suppose that ¢1 = c11 A2, + c12A14 + c13,

_ 4 3 2
P2 = ca1 ATy + oAl + a3 AT, + 24 Ara + c25,
7

b3 = ca1 ALy + c32 AT, + c33 AT, + c3aAra + 35, and Gy = Y e AT

i=1
2.3.1 If A2, — ||A14]|? = 0, we get that Ay = %[ A4 € R\ {0}, so all
coefficients A;; with ¢ + j = 5 are real.
2.3.2 If A2, — || A14]|* # 0, in order to show the vanishing of L3[6] we com-
pute (1, P2, A14), 7(d1, 3, A14) and r(¢p1, P4, A14) which are the resul-
tants of the polynomials ¢, ¢3 and ¢4 with ¢; rapport to A4 respectively.
We obtain the following

(1, P2, A1a) = 4a°|| Ara||*ni,
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(1, 3, Ara) = 9 || Ar4|*n3,

7(¢1, Pa, A1a) = 360°|| Ara||®n3,

where

m = —T74702 + 585602 + 11226202 — 795330 4 135302 — 90||A14|)? +
963|| Aval|® + 145%(| A1al* — 128% || Araf?,

n = —132678a* + 10841430 + 244029320 — 1798533304 + 472554 +
60753%a* — 2224802(| A4]|? + 3654083 A14?a® + 1812|| A14||? beta?a? —
177720%|| A1a]|0® + 4644 5% (| A1a[|*a® — 540[| Ara[|* + 5406 A1a||* —
1805%(| A14]|* + 20833 A14]|%,

and

ns = 1567925104 — 392052153a* — 2019897420 + 5600794233 a* —
26045787340 4 202486535t + 455625350 + 1833710402(| A14]2 —
3231365403 Ara]|2a2 — 7753950 A14]|25202 + 3873506433 || A1a||2a? —
2417356854 || A14%a? + 6262446 A14]|2a? 8% — 632610|| Ay4]|2a? 35 +
2003940]| A14]* — 39558243|| A4 |* + 202392082 || Ar4||* +
13317633 || A14* — 301076 8%(| A14]|* + 51192|| A14]|*35.

Since ¥ # 0, a can not be zero. From 2, ||A14]| also can not be zero. So in
order to show the vanishing of r(¢1, ¢2, A14), we compute (11,72, [|A14]])
and (11, M3, || A14]]) which are the resultants of the polynomials 7, and 73
with 7y rapport to ||A14|| respectively. We get that

r(nlan27 ||A14||) = 12&4(ﬁ+ 1)(ﬁ - 3)261’

r(n1, 3, [|Awal]) = —336a* (8 + 1)(8 — 3)*6,

where

5, = 73021538 — 391608037 + 21442023% + 151245723° — 180903083+ —
1342509633 4 2834811032 — 122146923 + 1108485,

and

5y = 2733753 —6880953% —135882087 +266351435+507797435 — 5349896 3+ —
1405369233 4 224966703 — 104081493 + 1368495.

Moreover, the polynomials é; and J> have no common roots, because
r(01, 02, 3) which is the resultant of the polynomials do with d; rapport
to B can not be zero.

We deduce from 1; # 0 that neither « can be equal to zero nor 3 can
be equal to three. So the vanishing of (7, 19, [|A14]]) and r(n1, 13, | A14]])
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implies that 3 = —1. Now if 3 = —1, we have 7 = 720a2 — 160| A14]|?,

then 7y = 0 gives that [|A14]|? = 7232, In this case, we get that

L3[6] = —4a(242, — 120414 + 9a?).

Finally, the vanishing of L3[6] gives that A;4 = 3(1 £ g)a € R\ {0}, so
all the coeflicients A;; with ¢ + j = 5 are real.
1

Conclusion For the lopsided quintic vector field (8), theorem 4 shows
that the origin is a center if and only if all the coefficients A4;; withi+j =5
are real, i.e. only if we have symmetry with respect to a line through the
origin.
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