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A computational method to obtain simplest normal forms, which we refer as
hypernormal forms, for vector fields having a linear degeneracy corresponding
to a double zero eigenvalue with geometric multiplicity one, is presented. The
procedure of simplifying the classical normal forms requires some hypothesis
on the nonlinear terms of the vector field. Once the hypothesis are established,
different hypernormal forms are obtained. Several examples are included in
order to show the applicability of our approach in concrete cases.
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1. INTRODUCTION

The local bifurcation theory of equilibria is based on a set of specific methods
that are useful to understand the behavior of a dynamical system or a bifurcation
problem. Among these methods, the normal form theory is an important tool,
because one can determine restricted classes of vector fields, which can be used
to classify the singularity, and also to discuss bifurcations in the corresponding
unfolding. The basic idea in this theory is to put the analytic expression of a
vector field in a simple and adequate form. This can be done in two ways: by
means of coordinate transformations (smooth conjugation) or by changing not
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only the state variables but also the time (smooth equivalence). Although in this
paper we will focus mainly on the use of conjugation, we will present (without
proofs) some results showing the improvements in the simplification procedure
that can be obtained by using equivalence.

The most cumbersome part in the applications is related to the computation of
the normal form coefficients. For this reason, we pay attention to the way this can
be done efficiently.

Throughout this paper, we will assume that, after a center manifold reduction
if necessary, we deal with a planar autonomous system, with an equilibrium point
having a linear degeneracy corresponding to a double zero eigenvalue with geo-
metric multiplicity one. After a translation and a linear transformation, we can
assume that the equilibrium point is located at the origin, and the linearization
matrix is put in Jordan form.

The underlying idea in the normal form theory is to perform near-identity trans-
formations to remove, in the analytic expression of the vector field, the terms that
are unessential in the local dynamical behavior. In the procedure of normalization
of the n-degree terms, the homological operator (see (2) later) plays an essential
role. This linear operator only depends on the linearization matrix, and so, the
structure of the normal form is characterized by the linear part of the vector field.

The key in the computation of the n-order terms of the normal form is the reso-
lution of the homological equation. In the Takens-Bogdanov singularity, this linear
equation has a two-parameter family of solutions. This fact leads to the appear-
ance of pairs of arbitrary constants (parameterizing the kernel of the homological
operator) in the expressions of the higher-order normal form coefficients. Selecting
these arbitrary constants adequately (for that, we must assume some conditions
on the nonlinear terms) one must arrive to simplified normal forms. Our goal is
to obtain the simplest ones, which we call hypernormal forms.

A general framework for the approach we follow in this paper (based on Lie
transforms) to obtain hypernormal forms, for an arbitrary singularity, can be found
in Algaba et al. [1].

The problem of obtaining further simplifications in the Takens-Bogdanov sin-
gularity has been addressed by several authors. Ushiki [11] analyze this problem
up to fourth-order in the nondegenerate case. In Gamero et al. [7], a higher-order
hypernormal form was obtained, including the expressions for the coefficients.

The analysis of the hypernormal form up to an arbitrary order has been carried
out by Baider & Sanders [2], in the context of graded Lie algebras. The authors
classified three different cases and solved two of them. The remaining case have
been addressed by Kokubu et al. [8] and Wang et al. [12]. In this last paper,
the simplest normal form is obtained by considering expansions of the vector field
in quasi-homogeneous components. In fact, this procedure can be conveniently
adapted to the Lie scheme that we adopt in the present paper.

Anyway, as is usually done, we will consider here the expansion of the vector
field in homogeneous components, that is, the procedure is done degree by degree.
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The afore-mentioned classification of Baider & Sanders [2] into three cases also
arises when focusing the problem from the Lie transform perspective. Here, we
present results for the three situations. Finally, we remark that we will consider
the normal form originally used by Bogdanov, which is the usual one in the study
of the Takens-Bogdanov bifurcation (in Baider & Sanders [2], the complementary
subspace to the range of the homological operator is the orthogonal subspace with
respect to the scalar product defined in Elphick et al. [6]).

It is remarkable that our approach gives different possibilities for the hypernor-
mal form structure (which is of interest when analyzing the topological determi-
nacy of the singularity, and the corresponding bifurcation problems). Moreover,
we provide recursive algorithms to obtain the expressions of the coefficients. This
fact will be essential to establish the additional simplifications that can be achieved
by using C∞-equivalence.

Another works, which addresses the computational aspects, are Chen & Della
Dora [3] that is based in the Carleman linearization procedure, and also Yuan
& Yu [13], which uses the conventional method of computing the transformation
leading to normal forms.

The present paper is organized as follows. In Section 2, we introduce the nota-
tions and state some well-known results concerning with the normal form theory
for the Takens-Bogdanov singularity. Also, we outline the procedure we will fol-
low. Some technical results and definitions are presented in Section 3. The main
results can be found in Section 4. In the theorems of this section, we assume that
some relations hold. Recursive algorithms to verify these relations are presented
in Section 5.

In Section 6 we include some particular cases in order to show some concrete
hypernormal forms and also to reveal the computational aspect of our approach.
Finally, in Section 7, we state without proofs, some results concerning to the
additional simplifications when using C∞-equivalence in two examples included in
Section 6. We have also included some appendices where present the proofs and
some generalizations of the results reached in Section 4.

2. BASIC DEFINITIONS AND PROPERTIES

Let us consider the planar system

ẋ = y + f(x, y),
ẏ = g(x, y), (1)

where f, g ∈ C∞ in a neighborhood of the origin in R2, and they vanish, together
their first derivatives, at the origin.

We will denote the vector field of the above system as v = (y + f(x, y))∂x +
g(x, y)∂y.
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Usually, we deal with Taylor expansions of the vector field. For this reason,
we will introduce the following notation: J nv denotes the n-jet of v (i. e., the
n-order Taylor polynomial of v at the origin). Likewise, vn = Jnv stands for
the homogeneous part of degree n of v (that is, vn = J nv − J n−1v). Obviously,
v1 = y∂x and vn ∈ Hn, the space of planar polynomial homogeneous vector fields
of degree n, for n ≥ 2.

The homological operator is determined by the linear part v1, and it is defined
by

Ln : Hn 7−→ Hn (2)
Un ∈ Hn 7−→ Ln(Un) = [Un, v1] ∈ Hn,

where [U, v] = DU · v −Dv · U is the Lie product.
Next, we summarize some properties related to the subspaces associated to the

homological operator (for details, see Cushman & Sanders [5], Elphick et al. [6]).

• A basis of Rn, the range of Ln, is
{
xn−1y∂x, . . . , yn∂x,−xn∂x + nxn−1y∂y, xn−2y2∂y, . . . , yn∂y

}

• A basis of Kn = Ker Ln is
{
fn,0 = yn∂x, fn,1 = xyn−1∂x + yn∂y

}
.

• A complementary subspace to Rn, that we denote by Cn, is spanned by{
xn∂y, xn−1y∂y

}
.

It is well known that, by means of a near-identity transformation (x, y) →
(x, y) + Un(x, y), with Un ∈ Hn (n ≥ 2), it is possible to simplify vn (annihilating
the part belonging to the range of the homological operator), leaving unalterated
the terms of order less than n (this fact is the basis of the Normal Form Theorem).
To be precise, splitting Hn = Rn ⊕ Cn, we can write vn = vr

n + vc
n with vr

n ∈ Rn

and vc
n ∈ Cn. It is enough to choose Un satisfying the homological equation

Ln(Un) = vr
n, (3)

to achieve that the n-order terms in the transformed vector field become v∗n =
vc

n ∈ Cn. The solution set of the linear equation (3) is parameterized by arbitrary
elements of the kernel of the homological operator. For each n ≥ 2, this yields
the appearance of two arbitrary constants in the expressions of the higher order
normal form coefficients. These degrees of freedom can be used, under adequate
hypothesis in the nonlinear terms, to annihilate some terms in the normal form,
and so we can arrive to simpler normal forms. Our aim is to obtain simplest
normal forms, called hypernormal forms.

In our analysis, we will assume, without loss of generality, that we have per-
formed a C∞–conjugation, leading system (1) to normal form, and then, our hy-
pothesis will be based on the normal form coefficients. In this way, we deal with
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the vector field

v = y∂x +
∑

n≥2

(anxn + bnxn−1y)∂y, (4)

and consequently, vn = (anxn + bnxn−1y)∂y for n ≥ 2.
Next, we describe the basic ideas of the approach we follow in this paper to

obtain the hypernormal forms for the vector field (4). The key is to perform
the transformations in a way well adapted to computations. Let us consider a
near-identity transformation:

(x, y) = ϕ(x̃, ỹ), (5)

corresponding to a generator U . This means that the change is the time-one
flow of the autonomous system corresponding to the vector field U . That is,
ϕ(x̃, ỹ) = u(x̃, ỹ, 1); where u(x̃, ỹ, ε) is the unique solution of the following initial
value problem:

∂

∂ε
u(x̃, ỹ, ε) = U(u(x̃, ỹ, ε)), u(x̃, ỹ, 0) = (x̃, ỹ). (6)

There is a correspondence between changes and generators, so that any change
has a generator associated and vice-versa. For details, we refer to Algaba et al.
[1].

The transformation (5) carries over the vector field (4) into

v∗ = v + [v, U ] + 1
2! [[v, U ], U ] + 1

3! [[[v, U ], U ], U ] + · · · = v +
∑

n≥1

1
n!

Tn
U (v),

where TU (v) = [v, U ] and Tn
U (v) = TU ◦ · · · ◦ TU (v).

The above expressions show how the generator U can be used to accomplish
a change of variables, without using the expressions of this change. Also, it is
possible to use a recursive procedure that provides the change from the generator
(see Chow & Hale [4]), but usually one seek for an adequate canonical expression
for the original system and do not worry about the change leading to such canonical
expression.

There are some properties of the Lie product which can be easily derived. So,
taking vk ∈ Hk and Uj ∈ Hj we have [vk, Uj ] ∈ Hk+j−1.

We will consider a transformation whose generator U =
∑

n≥1 Un satisfies:

ProjRn


∑

j≥1

1
j!

T j
U (v)


 = 0, for all n ≥ 2. (7)
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In this way, the transformed vector field v∗ is also put in normal form. More-
over, such a generator U will be selected so that v∗ has the maximum number of
vanishing coefficients.

The structure of U , degree by degree, is as follows.

(1) First, we impose that the linear parts of v∗ and v agree. This condition
leads to the relation [v1, U1] = 0, and then U1(x, y) = A1,0f1,0 + A1,1f1,1 ∈ K1,
where A1,1, A1,0 ∈ R are arbitrary. In Lemmas 20, 21 we will show that these
arbitrary constants do not permit to annihilate terms in v∗. So, we will take the
generator with zero linear part: U1 = 0.

(2) Taking n = 2 in (7), we get that the second-order terms of U satisfies
[v1, U2] = 0. Hence, U2(x, y) = A2,0f2,0 + A2,1f2,1 ∈ K2.

(3) For n = 3, the third-order terms of U will be taken such that

[v1, U3] + ProjR3
([v2, U2]) = 0 ⇐⇒ L3(U3) = ProjR3

([v2, U2]) .

Then,

U3 = A3,0f3,0 + A3,1f3,1 + UL
3 ,

where UL
3 depends linearly on A2,0, A2,1.

(4) In the remaining cases n ≥ 4, the n-degree of U satisfies

[v1, Un] + ProjRn

(
[v2, Un−1] + · · ·+ [vn−1, U2]

1
2!

[[v, U ], U ] + · · ·
)

= 0.

Then,

Un = An,0fn,0 + An,1fn,1 + UL
n + UNL

n ,

where UL
n depends linearly on A2,0, A2,1, . . . , An−1,0, An−1,1 and UNL

n depends
nonlinearly on these constants.

The above definition can be extended to U2 and U3, by taking UL
2 = UNL

2 =
UNL

3 = 0. For n ≥ 3, UL
n and UNL

n will be selected as follows:

• UL
n is a particular solution of

Ln

(
UL

n

)
= ProjRn

(
[v2, U

L
n−1] + · · ·+ [vn−1, U

L
2 ]

)
. (8)

• UNL
n is a particular solution of

Ln

(
UNL

n

)
= ProjRn


[v2, U

NL
n−1] + · · ·+ [vn−1, U

NL
2 ]

∑

j≥2

1
j!

T j
U (v)


 . (9)
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Once we have obtained the generator U from (7), as a function of An,0, An,1

(n ≥ 2), we must analyze how these arbitrary constants appear in v∗ and describe
how much this can be simplified.

We will proceed recursively performing transformations, each of one depending
on one arbitrary constant. In this way, we will see how each arbitrary constant
appear v∗, and determine which term can be annihilated selecting adequately the
arbitrary constant.

We fix h ≥ 2, i = 0, 1, and consider the generator satisfying (7) that depends
only on Ah,i (i. e., we annihilate the remaining arbitrary constants). This gen-
erator is U = Uh + Uh+1 + · · ·, where Uh = Ah,ifh,i and Un = UL

n + UNL
n for all

n ≥ h + 1.
As J h[v, U ] = 0, there exists λ ≥ h such that

ProjCk
[v, U ] = [v, U ]k = 0 for k = 2, . . . , λ, and

[v, U ]λ+1 = ProjCλ+1
[v, U ] 6= 0.

Moreover, it can be proved that J λ+(j−1)(h−1)+1T j
U (v) = 0 for j ≥ 3. Then, we

get Uh = UL
h , . . . , Uh+λ−1 = UL

h+λ−1. Moreover, there exists δ ≥ h + λ such that

[v2, U
NL
k−1] + · · ·+ [vk−h, UNL

h+1] + Jk





∑

j≥2

1
j!

T j
U (v)



 = 0,

for k = h + 1, . . . , δ − 1.
This means that the arbitrary constant appears linearly in the terms of order

less than δ of the generator. Also, there exists µ ≥ δ such that

ProjCk



[v2, U

NL
k−1] + · · ·+ [vk−h, UNL

h+1] +
∑

j≥2

1
j!

T j
U (v)



 = 0,

for k = h + 1, . . . , µ. Then:

v∗ = v1 + · · ·+ vλ + (vλ+1 + ṽλ+1) + · · ·+ (vµ + ṽµ) + v∗µ+1 + v∗µ+2 + · · · ,
where

ṽk = ProjCk

{
[v2, U

L
k−1] + · · ·+ [vk−h+1, U

L
h ]

}
, (10)

for k = λ + 1, . . . , µ. Moreover, the following relations must be fulfilled

ProjRk

{
[v1, U

L
k ] + [v2, U

L
k−1] + · · ·+ [vk−h+1, U

L
h ]

}
= 0, (11)

for k = h + 1, . . . , µ. Moreover, Ah,i can appear nonlinearly in the terms of v∗ of
order greater than µ + 1. Obviously, in our analysis, we will focus on the linear
appearance of these arbitrary constants.
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3. TECHNICAL RESULTS

In this section we include some definitions and results we will use in the next
section to derive the hypernormal forms.

Recall that our approach is the following: for each Ah,i ∈ R, (h ≥ 2, i = 0, 1),
we must determine λ, δ, µ; solve the equation (11) and then compute ṽk from (10).

As we will need to manage normal form coefficients, we define the projection
operators Π1, Π2 : Cn 7−→ R, by:

Π1

(
(Axn + Bxn−1y)∂y

)
= A, Π2

(
(Axn + Bxn−1y)∂y

)
= B,

that allows to extract each normal form coefficient.
To solve (11), we must deal with the Lie product for vector fields vn = (anxn +

bnxn−1y)∂y. For that, we define the vector subspaces Hk;j (k ∈ N, j ∈ Z) and the
operators L(n, j), N(n, j) (n ∈ N, j ∈ Z) (see Lemma 4):

• Hk;j =
{
Axk−jyj∂x + Bxk−j−1yj+1∂y : A,B ∈ R}

for j = 0, . . . , k − 1.
• Hk;k =

{
Ayk∂x : A ∈ R}

.
• Hk;−1 =

{
Axk∂y : A ∈ R}

.
• Hk;j = {0}, for j < −1, j ≥ k + 1.

Observe that Hk =
⊕k

j=−1Hk;j =
⊕∞

j=−∞Hk,j . Also:

• Hk;j ⊂ Rk, for j = 1, . . . , k;
• Hk;−1 ⊂ Ck,
• Kk ⊂ Hk;k−1

⊕Hk;k.

Usually, we will write the elements of Hk;j as fk;k−j . Alternatively, we will use
the notation fk;j for the elements belonging to Hk;k−j .

Taking canonical basis, we can represent the subspaces Hk;j as:

Hk;j =
{(

A
B

)
: A,B ∈ R

}
, for j = 0, . . . , k − 1.

Hk;k =
{(

A
0

)
: A ∈ R

}
.

Hk;−1 =
{( 0

A

)
: A ∈ R

}
.

Hk;j =
{( 0

0
)}

, for j ≤ −2, or j ≥ k + 1.

For instance, the elements of the basis of Kk = Ker Lk are fk,0 = yk∂x =
( 1

0
)
∈

Hk;k and also fk,1 = xyk−1∂x + yk∂y =
( 1

1
)
∈ Hk;k−1.

The linear operators L, N arise when manipulating Lie products involving nor-
mal form terms. They depend upon the normal form coefficients, and are defined
by:
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• L(n, j) : Hk;j 7−→ Hk+n;j

fk;k−j =
(

A
B

)
7−→ bn+1

( −j 0
n −j

)(
A
B

)
.

• N(n, j) : Hk;j 7−→ Hk+n;j−1

fk;k−j =
(

A
B

)
7−→ an+1

( −j 0
n + 1 −j − 1

)(
A
B

)
.

Next, we define another operator M(k − j), we will use to solve the homological
equation:

• If k − j 6= 0,−1, then M(k − j) : Hk;j

⋂Rk 7−→ Hk;j−1 is defined by

fk;k−j =
(

A
B

)
7−→ 1

(k − j)(k − j + 1)

(
k − j 1

0 k − j + 1

)(
A
B

)
.

• If k − j = 0, then M(0) : Hk;k 7−→ Hk;k−1 is defined by
(

A
0

)
7−→

( 0
−A

)
.

• If k − j = −1, then the definition for M(−1) is obvious, because the domain
is the zero subspace.

It is easy to prove that the above operators are well defined.

Definition 1. Let us consider l > 0. A l-index is an element n = (n1, . . . , nl) ∈
Nl (here, N is the set of natural numbers not including zero. Through this paper,
N0 will denote the set of natural numbers including zero). The set of l-indices is
denoted by Il. The modulus of a l-index is |n| = n1 + · · ·+ nl.

Given a l-index n ∈ Il, we say that n′ ∈ Il is associated to n, and we write
n′ ∼ n, if n′j − nj = 1, or n′j − nj = 2, for all j = 1, . . . , l.

The elements appearing in the next definitions are useful to solve explicitly the
equation (11) (see Theorem 12). Also, we use them to obtain ṽk, described in (10)
(see Theorem 13). These elements, which depend linearly on Ah,i, determine the
terms in v∗ which can be annihilated by selecting the arbitrary constant Ah,i ∈ R
adequately.

Definition 2. Let us consider fh;i ∈ Hh;h−i and n,n′ ∈ Il with n′ ∼ n. We
define fh,n;i,n′ ∈ Hh+|n|;h−i+|n|−|n′| by induction in l:

For l = 1,

fh,n1;i,n′1 = 0, if h− i + n1 − n′1 ≤ −2,

fh,n1;i,n′1 = M(i + n′1 − 1) ◦ ProjRh+n1
(Hn1 ◦ fh;i), if h− i + n1 − n′1 ≥ −1,
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where

Hn1 =
{

L (n1, h− i) , whenever n′1 − n1 = 1,

N (n1, h− i) , whenever n′1 − n1 = 2.
(12)

Assume that we have already defined fh,n;i,n′ for any n = (n1, . . . , nl) ∈ Il,
n′ = (n′1, . . . , n

′
l) ∈ Il, with n′ ∼ n. Consider ñ = (n, nl+1) ∈ Il+1, ñ′ =

(n′, n′l+1) ∈ Il+1 such that ñ′ ∼ ñ. We define

fh,ñ;i,ñ′ = 0, if h− i + |ñ| − |ñ′| ≤ −2,

fh,ñ;i,ñ′ = M (i + |ñ′| − 1)◦ProjRh+|ñ|(Hnl+1 ◦fh,n;i,n′), if h− i+ |ñ|− |ñ′| ≥
−1,

where

Hnl+1 =

{
L (nl+1, h− i + |n| − |n′|) , whenever n′l+1 − nl+1 = 1,

N (nl+1, h− i + |n| − |n′|) , whenever n′l+1 − nl+1 = 2.
(13)

Definition 3. Let us consider fh;i ∈ Hh;h−i and n,n′ ∈ Il with n′ ∼ n. We
define f̃h,n;i,n′ ∈ Hh+|n|;h−i+|n|−|n′|+1 by induction in l as follows:

For l = 1:

f̃h,n1;i,n′1 = 0, if h− i + n1 − n′1 ≤ −3,

f̃h,n1;i,n′1 = Hn1 ◦ fh;i, if h− i + n1 − n′1 ≥ −2, where Hn1 is given in (12).

Assume that we have already defined f̃h,n;i,n′ for any n = (n1, . . . , nl) ∈ Il,
n′ = (n′1, . . . , n

′
l) ∈ Il, with n′ ∼ n. Consider ñ = (n, nl+1) ∈ Il+1, ñ′ =

(n′, n′l+1) ∈ Il+1 such that ñ′ ∼ ñ. We define

f̃h,ñ;i,ñ′ = 0, if h− i + |ñ| − |ñ′| ≤ −3,

f̃h,ñ;i,ñ′ = Hnl+1 ◦M(i+ |n′|−1)◦ProjRh+|n| f̃h,n;i,n′ , if h−i+ |ñ|−|ñ′| ≥ −2,
where Hnl+1 is given in (13).

It is easy to show that the elements fh,n;i,n′ , f̃h,n;i,n′ are well defined. The fol-
lowing lemmas provide some properties of subspaces Hk;j and the above-defined
operators.

Lemma 4.

(1)[Hm;r,Hk;j ] ⊆ Hm+k−1;r+j.
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(2)Consider fk;j ∈ Hk;k−j. Then:

[vn, fk;j ] = f̃k,n−1;j,n + f̃k,n−1;j,n+1 ∈ Hn+k−1;k−j

⊕
Hn+k−1;k−j−1.

(3) (a)Consider fk;k−j ∈ Hk;j ⊂ Rk (with j 6= 0,−1). Then, Uk = M(k −
j) ◦ fk;k−j is a solution of Lk(Uk) = fk;k−j.

(b)Consider fk;k = Axk∂x +Bxk−1y∂y ∈ Hk;0

⋂Rk (i. e., B = −kA). Then,
Uk = M(k) ◦ fk;k is a solution of Lk(Uk) = fk;k.

(4)Consider fk;k = Axk∂x + Bxk−1y∂y ∈ Hk;0. Then, ProjCk
fk;k = (B +

kA)xk−1y∂y.
(5)Consider n,n′ ∈ Il with n′ ∼ n.

(a)Let ñ = (n,m) ∈ Il+1, ñ′ = (n′, m + 1) ∼ ñ. Then: f̃h,ñ;i,ñ′ = L(m, h −
i + |n| − |n′|) ◦ fh,n;i,n′ .

(b)Let ñ = (n,m) ∈ Il+1, ñ′ = (n′,m + 2) ∼ ñ. Then: f̃h,ñ;i,ñ′ = N(m,h −
i + |n| − |n′|) ◦ fh,n;i,n′ .

(c)fh,n;i,n′ = M(i + |n′| − 1) ◦ ProjRh+|n| f̃h,n;i,n′ .

Proof. (1) We will consider here the case 0 ≤ r + j < m + k − 1.
Denote fm;m−r = Axm−ryr∂x+Bxm−r−1ym+1∂y ∈ Hm;r, fk;k−j = Cxk−jyj∂x+

Dxk−j−1yj+1∂y ∈ Hk;j . After some computations, we get

[fm;m−r, fk;k−j ] = ((m− r − k + j)AC + rAD − jBC) xm+k−r−j−1yr+j∂x (14)
+ ((m− r − 1)BC + (r + j)BD − (k − j − 1)AD)xm+k−r−j−2yr+j+1∂y,

which belongs to Hm+k−1;r+j . The remaining cases: r + j < −1, r + j = −1,
r + j = m + k − 1, r + j > m + k − 1 are analogous.
(2) As in the above item, we will consider here only one case: 0 < k − j − 1 <
n + k − 1 (the remaining ones are analogous).

Let fk;j = Axjyk−j∂x + Bxj−1yk−j+1∂y ∈ Hk;k−j . Then:

[vn, fk;j ] = −(k − j)anAxn+jyk−j−1∂x

+ (nanA− (k − j + 1)anB)xn+j−1yk−j∂y −
−(k − j)bnAxn+j−1yk−j∂x + ((n− 1)bnA− (k − j)bnB)xn+j−2yk−j+1∂y,

which belongs to Hn+k−1;k−j−1

⊕Hn+k−1;k−j . Using coordinates in Hk;k−j ,
Hn+k−1;k−j−1, Hn+k−1;k−j , and writing

(
−(k − j)anA

nanA− (k − j − 1)anB

)
= an

(
−(k − j) 0

n −(k − j + 1)

) (
A
B

)
=

= N(n− 1, k − j) ◦ fk;j = f̃k,n−1;j,n+1,
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(
−(k − j)bnA

(n− 1)bnA− (k − j)bnB

)
= bn

(
−(k − j) 0

n− 1 −(k − j)

) (
A
B

)
=

= L(n− 1, k − j) ◦ fk;j = f̃k,n−1;j,n,

we obtain the result.
(3) (a) It is enough to see that Lk(M(k − j) ◦ fk;k−j) = fk;k−j . We will consider
here the case 1 ≤ j < k. The remaining situations (j < −1, j = k, j > k) are

similar. Let fk;k−j =
(

A
B

)
∈ Hk;j ⊂ Rk. Then:

M(k − j) ◦ fk;k−j =

(
1

k−j+1

(
A + 1

k−j B
)

1
k−j B

)
∈ Hk;j−1.

It is a straightforward computation to obtain

Lk(M(k − j) ◦ fk;k−j) =

=
[

1
k − j + 1

(
A +

1
k − j

B

)
xk−j+1yj−1∂x +

1
k − j

Bxk−jyj∂y, y∂x

]
=

= Axjyk−j∂x + Bxj−1yk−j+1∂y = fk;k−j .

The proof of item (b) is analogous.
(4) It is enough to use

ProjCk
(
(
A1x

k + A2x
k−1y + · · ·+ Ak+1y

k
)
∂x +

+
(
B1x

k + B2x
k−1y + · · ·+ Bk+1y

k
)
∂y) =(

B1x
k + (B2 + kA1)xk−1y

)
∂y.

(5) This item follows directly from Definitions 2, 3.

The proofs of the next lemmas are based on the use of induction and some
manipulations, and they are omitted for the sake of brevity.

Lemma 5. Let n = (n1, . . . , nl) ∈ Il with l ≥ 2. Consider j such that 1 ≤ j < l,
and define ñ = (n1, . . . , nj) ∈ Ij, ñ′ = (n1 + 2, . . . , nj + 2) ∼ ñ. Then:

f2l−1,ñ;0,ñ′ = cj

(
2(j − l)
|ñ|+ 2j

)
∈ H2l−1+|ñ|;2l−2j−1,

where f2l−1;0 = y2l−1∂x ∈ H2l−1;2l−1, c1 = −an1+1

n1+2 , cj = − 2(j−l−1)anj+1

|ñ|+2j cj−1 for
j ≥ 2.

Using this lemma with j = l − 1, we can prove:
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Lemma 6. Let n ∈ Il with l ≥ 1, and define n′ = (n1 + 2, . . . , nl + 2) ∼ n.
Then:

f̃2l−1,n;0,n′ = cl−1anl+1

( 2
−2(|n|+ 2l − 1)

)
∈ H2l−1+|n|;0,

where f2l−1;0 = y2l−1∂x ∈ H2l−1;2l−1.
In particular, ProjC2l−1+|n| f̃2l−1,n;0,n′ = 0.

Lemma 7. Let n = (n1, . . . , nl) ∈ Il with l ≥ 2. Consider j such that 1 ≤ j < l,
and define ñ = (n1, . . . , nj) ∈ Ij, ñ′ = (n1 + 1, . . . , nj + 1) ∼ ñ. Then:

fl−1,ñ;0,ñ′ = dj

(
j − l + 1
|ñ|+ j

)
∈ Hl+|ñ|−1;l−j−1,

where fl−1;0 = yl−1∂x ∈ Hl−1;l−1, d1 = − bn1+1

n1+1 and dj = − (j−l)bnj+1

|ñ|+j dj−1 for
j ≥ 2.

Using the above lemma with j = l − 1, we obtain:

Lemma 8. Let n ∈ Il with l ≥ 2, and define n′ = (n1 + 1, . . . , nl + 1) ∼ n.
Then:

f̃l−1,n;0,n′ = 0 ∈ Hl+|n|−1;0,

where fl−1;0 = yl−1∂x ∈ Hl−1;l−1.

Lemma 9. Let n ∈ Il with l ≥ 2. Define the following pairs of l-indices:

n(1) = (n1, n2, . . . , nl−1, nl) = n,

n(1)′ = (n1 + 2, n2 + 1, . . . , nl−1 + 1, nl + 1) ∼ n(1),

n(2) = (n2, n1, . . . , nl−1, nl),

n(2)′ = (n2 + 1, n1 + 2, . . . , nl−1 + 1, nl + 1) ∼ n(2),

...
n(l−1) = (n2, n3, . . . , n1, nl),

n(l−1)′ = (n2 + 1, n3 + 1, . . . , n1 + 2, nl + 1) ∼ n(l−1),

n(l) = (n2, n3, . . . , nl, n1),

n(l)′ = (n2 + 1, n3 + 1, . . . , nl + 1, n1 + 2) ∼ n(l).

Then
l∑

j=1

f̃l−1,n(j);0,n(j)′ = 0 ∈ Hl+|n|−1;−1.

Using this lemma, we can prove the next one:
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Lemma 10. Let n ∈ Il with l ≥ 2, and define n′ = (n1+2, n2+1, . . . , nl+1) ∼ n.
Then:

∑ ′
σ∈ς{1,...,l}

f̃l−1,σ(n);0,σ(n′) = 0 ∈ Hl+|n|−1;−1,

where ς {1, . . . , l} is the permutation group of elements {1, . . . , l}; and we have de-
noted σ(n) =

(
nσ(1), . . . , nσ(l)

) ∈ Il; and fl−1;0 = yl−1∂x ∈ Hl−1;l−1. The symbol∑′ denotes that only the summands f̃l−1,σ(n);0,σ(n′) that are different must be con-
sidered (observe that two different permutations should define the same element).

Another property, we will use later, is the following:

Lemma 11. Let n ∈ Il with l ≥ 2, and define n′ = (n′1, . . . , n
′
l−2, nl−1 + 1, nl +

1) ∼ n (i. e., n′j − nj = 1, 2 for j = 1, . . . , l− 2). Consider h ∈ N, i ∈ Z such that
h− i + |n| − |n′| = −2. Then:

f̃h,n;i,n′ = 0 ∈ Hh+|n|;−1.

The next question we address in this section is the computation of the generators
in

⊕n
j=1Hj which leave the vector field in normal form up to order n. The

relations ProjRj
J n[v, U ] = 0 (j = 1, . . . , n) must hold. Theorem 12 provides the

solution of these equations. Later, in Theorem 13, we will compute ProjCj
J n[v, U ]

(j = 1, . . . , n), in order to analyze how is altered the normal form up to order n.

Theorem 12. Let us consider the vector field v given in (4). Then, the general
solution of the PDE

ProjLn
k=1Rk

([v, U ]) = 0, (15)

(see (11)) is U = U1 + U2 + · · ·+ Un, where

Uk = Ak,0fk;0 + Ak,1fk;1 +
∑

h=1,...,k−1

i=0,1

Ah,i





∑

l>0,n∈Il,n
′∼n

h+|n|=k,i+|n′|<k+1

fh,n;i,n′+

+
∑

l>0,n∈Il,n
′∼n

h+|n|=k,i+|n′|=k+1

M(k) ◦ ProjRk
f̃h,n;i,n′





, (16)

for k = 1, . . . , n where fh;1 =
( 1

1
)
∈ Hh;h−1 ⊂ Kh, fh;0 =

( 1
0

)
∈ Hh;h ⊂ Kh,

and Ah,i ∈ R, for h = 1, . . . , k, i = 0, 1.
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Proof. Equation (15) is equivalent to

[v1, U1] = 0,

[v1, U2] + ProjR2
[v2, U1] = 0, (17)

· · ·
[v1, Un] + ProjRn

([v2, Un−1] + · · ·+ [vn, U1]) = 0.

We proceed by induction on n.
• n = 1. In this case, there is only one equation: [v1, U1] = 0. Its general solution
is

U1 = A1,0f1;0 + A1,1f1;1 ∈ K1,

where f1;0 =
( 1

0
)
∈ H1;1, f1;1 =

( 1
1

)
∈ H1;0, and A1,0, A1,1 ∈ R. The above

expression agrees with (16) for k = 1 (for this value of k, any index n ∈ Il satisfies
h + |n| > k and the sums inside the braces in (16) are null).
• Assume that the solution of the first n − 1 equations in (17) is U = U1 + U2 +
· · ·+ Un−1, where Uk are given in (16) for k = 1, . . . , n− 1.

To prove the result for n equations, we must solve in addition the nth equation
of (17):

[v1, Un] + ProjRn
([v2, Un−1] + · · ·+ [vn, U1]) = 0,

or equivalently

Ln(Un) = ProjRn

(
n−1∑

k=1

[vn−k+1, Uk]

)
.

For k = 1, . . . , n− 1, we have

[vn−k+1, Uk] = Ak,0[vn−k+1, fk;0] + Ak,1[vn−k+1, fk;1] + (18)

+
∑

h=1,...,k−1

i=0,1

Ah,i





∑

l>0,n∈Il,n
′∼n

h+|n|=k,i+|n′|<k+1

[vn−k+1, fh,n;i,n′ ]+

+
∑

l>0,n∈Il,n
′∼n

h+|n|=k,i+|n′|=k+1

[
vn−k+1,M(k) ◦ ProjRk

f̃h,n;i,n′
]




.

For each h = 1, . . . , n−1, i = 0, 1, we deal separately with the double sums in the
second and third line of (18). With respect to the sum in the third line, using that
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M(k) ◦ ProjRk
f̃h,n;i,n′ ∈ Hk;−1 ⊆ Ck, we find

[
vn−k+1,M(k) ◦ ProjRk

f̃h,n;i,n′
]
∈

Hn;−1 ⊆ Cn, and then its projection onto Rn vanishes.
With respect to the elements in the first line and the double sum in the second

line of (18), applying item (2) of Lemma 4, we have

[vn−k+1, fk;i] = f̃k,n−k;i,n−k+1 + f̃k,n−k;i,n−k+2, and (19)

[vn−k+1, fh,n;i,n′ ] = f̃h,ñ;i,ñ′ + f̃h,ñ;i,ñ′′ ,

where ñ = (n, n − k) ∈ Il+1, ñ′ = (n′, n − k + 1) and ñ′′ = (n′, n − k + 2).
Note that both, ñ′ ∼ ñ and ñ′′ ∼ ñ. Also, h + |ñ| = n, i + |ñ′| < n + 2 and
i + |ñ′′| < n + 3. Moving k throughout the values 1, . . . , n− 1, ñ runs the set Il+1

and ñ′, ñ′′ are all the (l + 1)-indices associated to ñ. So,

ProjRn

(
n−1∑

k=1

[vn−k+1, Uk]

)
=

= ProjRn

∑

h=1,...,n−1

i=0,1

Ah,i





∑

l≥0,ñ∈Il+1,ñ′∼ñ

h+|ñ|=n,i+|ñ′|<n+3

f̃h,ñ;i,ñ′





= ProjRn

∑

h=1,...,n−1

i=0,1

Ah,i





∑

l>0,n∈Il,n
′∼n

h+|n|=n,i+|n′|<n+3

f̃h,n;i,n′





.

In the last equality, we have displaced the summation index l + 1 −→ l.
In the last sum, we must consider n′ ∼ n with i + |n′| < n + 3. There are three

possibilities:

(a) i + |n′| < n + 1. Here, f̃h,n;i,n′ ∈ Rn, and ProjRn
f̃h,n;i,n′ = f̃h,n;i,n′ .

(b) i + |n′| = n + 1, where f̃h,n;i,n′ ∈ Hn;0.

(c) i + |n′| = n + 2. Now, f̃h,n;i,n′ ∈ Hn;−1 ⊆ Cn, and then ProjRn
f̃h,n;i,n′ = 0.

So, we can write

ProjRn

(
n−1∑

k=1

[vn−k+1, Uk]

)
=

∑

h=1,...,n−1

i=0,1

Ah,i





∑

l>0,n∈Il,n
′∼n

h+|n|=n,i+|n′|<n+1

f̃h,n;i,n′+
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+
∑

l>0,n∈Il,n
′∼n

h+|n|=n,i+|n′|=n+1

ProjRn
f̃h,n;i,n′





.

Using now item (3) of Lemma 4, the general solution of the linear equation
Ln(Un) = ProjRn

∑n−1
k=1 [vn−k+1, Uk] can be expressed as

Un = An,0fn;0 + An,1fn;1 +

+
∑

h=1,...,n−1

i=0,1

Ah,i





∑

l>0,n∈Il,n
′∼n

h+|n|=n,i+|n′|<n+1

M(i + |n′| − 1) ◦ f̃h,n;i,n′

+
∑

l>0,n∈Il,n
′∼n

h+|n|=n,i+|n′|=n+1

M(i + |n′| − 1) ◦ ProjRn
f̃h,n;i,n′





.

To fulfill the proof, it is enough to use item (5)(c) of Lemma 4.

Theorem 13. Let us consider the general solution U =
∑n

k=1 Uk ∈
⊕n

k=1Hk

of equation (15), obtained in the above theorem. Then,

ṽk = ProjCk
([v, U ]) =

∑

h=1,...,k−1

i=0,1

Ah,i





∑

l>0,n∈Il,n
′∼n

h+|n|=k,i+|n′|=k+2

f̃h,n;i,n′

+
∑

l>0,n∈Il,n
′∼n

h+|n|=k,i+|n′|=k+1

ProjCk
f̃h,n;i,n′





, (20)

for k = 2, . . . , n.

Proof. As [v1, Un] ∈ Rn, we get ṽn = ProjCn
([v1, Un] + [v2, Un−1] + · · ·+ [vn, U1]) =

ProjCn
([v2, Un−1] + · · ·+ [vn, U1]) .

We focus into obtaining ProjCn
[vn−k+1, Uk] for k = 1, . . . , n−1. The expression

of [vn−k+1, Uk] appears in (18). As in the proof of the above theorem, we start
analyzing the double sum in the third line of (18). We have seen that its elements
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belongs to Cn. Using item (5)(c) of Lemma 4, we can write its summands as

[
vn−k+1,M(k) ◦ ProjRk

f̃h,n;i,n′
]

= [vn−k+1, fh,n;i,n′ ].

Denote ñ = (n, n−k) ∈ Il+1, ñ′ = (n′, n−k+1) ∼ ñ and ñ′′ = (n′, n−k+2) ∼ ñ.
Observe that h + |ñ| = n, i + |ñ′| = n + 2 and i + |ñ′′| = n + 3. Applying item (2)
of Lemma 4, we obtain

[vn−k+1, fh,n;i,n′ ] = f̃h,ñ;i,ñ′ + f̃h,ñ;i,ñ′′ = f̃h,ñ;i,ñ′ ,

because h + |ñ| − i− |ñ′′| = −3, and then f̃h,ñ;i,ñ′′ = 0.
In summary

[
vn−k+1,M(k) ◦ ProjRk

f̃h,n;i,n′
]

= f̃h,ñ;i,ñ′ .

The remaining elements of (18) (the two summands in the first line and the double
sum in the second line) appear in (19). In the double sum in the second line of
(18), we must consider indices n ∈ Il,n′ ∼ n with h + |n| = k, i + |n′| < k + 1.
As f̃h,n;i,n′ ∈ Rh+|n|, whenever h + |n| − i − |n′| ≥ 0, when projecting onto Cn

we must consider only the indices such that i + |n′| = k (the remaining have zero
projection).

Now, we move k throughout the values 1, . . . , n− 1, so that ñ runs the set Il+1

and ñ′, ñ′′ run the set of (l + 1)-indices associated to ñ. Consequently:

ṽn = ProjCn

n−1∑

k=1

[vn−k+1, Uk] =
∑

h=1,...,n−1

i=0,1

Ah,i





∑

l≥0,ñ∈Il+1,ñ′∼ñ

h+|ñ|=n,i+|ñ′|=n+2

f̃h,ñ;i,ñ′

+
∑

l≥0,ñ∈Il+1,ñ′∼ñ

h+|ñ|=n,i+|ñ′|=n+1

ProjCn
f̃h,ñ;i,ñ′





.

To fulfill the proof, it is enough to displace the summation index l + 1 −→ l.

We are interested in the expressions (16), (20) but depending only on one ar-
bitrary constant Ah,i (with h, i fixed) and annihilating the remaining ones. The
quoted arbitrary constant appears in the h-order terms and upper (see Theorem
12). The structure of the coefficient of such arbitrary constant suggest the follow-
ing definitions:
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Definition 14. We will denote H∗k;j = Hk;j

⊕Hk;j+1

⊕ · · ·⊕Hk;k. Consider
f ∈ H∗k;j , f 6= 0. We define the order and the difference of f by:

ord(f) = k,

dif(f) = max
{
m ∈ Z : f ∈ H∗k;m

}
.

The next properties follow directly from the above definition:

Lemma 15.

(1)Consider f ∈ Hk;j, f 6= 0. Then ord(f) = k, dif(f) = j.
(2)Consider f ∈ H∗k;j, with j ≤ −2. Then dif(f) ≥ −1.
(3)Consider f ∈ H∗k;j, f 6= 0. Then −1 ≤ dif(f) ≤ k.
(4)Consider f ∈ H∗k;j, f 6= 0.

If dif(f) ≥ 1, then f ∈ Rk.

If dif(f) = −1, then f ∈ Ck.

If dif(f) = 0, then f may have nonzero projection onto Rk and Ck.

In particular, the elements in H∗k;j with nonzero projection onto Ck have difference
negative or zero.

Next, we extend the operators N , L, M to H∗k;j .

Definition 16. Consider f =
∑

m≥j fk;k−m ∈ H∗k;j , where fk;k−m ∈ Hk;m for
m ≥ j. We define

Nnf =
∑

m≥j

N(n,m) ◦ fk;k−m ∈ H∗k+n;j−1,

Lnf =
∑

m≥j

L(n,m) ◦ fk;k−m ∈ H∗k+n;j ,

Mf =
∑

m≥j

M(k −m) ◦ ProjRk
fk;k−m ∈ H∗k;j−1.

Lemma 4 can be generalized as follows:

Lemma 17.

(1)
[
H∗m;r,H∗k;j

]
⊆ H∗m+k−1;r+j.

(2)Consider f ∈ H∗k;j. Then [vn, f ] = Nn−1f + Ln−1f ∈ H∗n+k−1;j−1.
(3)Consider f ∈ H∗k;j. Then Uk = Mf is a solution of the homological equation

Lk(Uk) = ProjRk
f .
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(4)Consider f ∈ H∗k;j with j > 0. Then ProjCk
f = 0.

(5)Consider fk;j ∈ Hk;k−j. Then:

fk,n;j,n+1 = MLnfk;j ∈ Hk+n;k−j−1, fk,n;j,n+2 = MNnfk;j ∈ Hk+n;k−j−2,

f̃k,n;j,n+1 = Lnfk;j ∈ Hk+n;k−j , f̃k,n;j,n+2 = Nnfk;j ∈ Hk+n;k−j−1.

Also, consider n ∈ Il and n′ ∼ n. Then:

f̃h,n;i,n′ = Hnl
MHnl−1 · · ·MHn1fh;i ∈ Hh+|n|;h+|n|−i−|n′|+1,

fh,n;i,n′ = MHnl
· · ·MHn1fh;i ∈ Hh+|n|;h+|n|−i−|n′|,

where Hnk
is given in (12), (13).

Definition 18. We will denote

P (
Hnl

MHnl−1 · · ·MHn1fh;i

)
=

′∑

σ∈ς{1,···,l}
Hnσ(1)MHnσ(2) · · ·MHnσ(l)fh;i,

(recall that ς {1, . . . , l} is the permutation group of elements {1, . . . , l}). Also,
P (MHnl

· · ·MHn1fh;i) =
∑′

σ∈ς{1,···,l}MHnσ(1) · · ·MHnσ(l)fh;i, where, as before,∑′ denotes that only the summands that are different must be considered.

Next, we analyze the effect of Nn, Ln, M on the difference of an element.

Lemma 19. Consider f ∈ H∗k;j, f 6= 0, with −1 ≤ j ≤ k.

(1) If dif(f) = 0 and ProjHk;0
f =

( 0
B

)
, then dif(Lnf) > dif(f).

If dif(f) 6= 0 or ProjHk;0
f 6=

( 0
B

)
, then dif(Lnf) = dif(f).

(2) If dif(f) = −1, then dif(Nnf) ≥ dif(f)− 1.

If dif(f) = 0 and ProjHk;0
f =

(
A

(n + 1)A

)
, then dif(Nnf) > dif(f)− 1.

In any other case, dif(Nnf) = dif(f)− 1.
(3)dif(Mf) = dif(f)− 1 whenever 0 ≤ j ≤ k.

Proof.

(1) It is enough to use Ker N(n, j) = {0} for j = 1, . . . , k; Ker N(n,−1) =

Hk;−1; and KerN(n, 0) =
{(

A
(n + 1)A

)
: A ∈ R

}
⊂ Hk;0.
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(2) The relations in the statement hold because KerL(n, j) = {0} for j 6= 0;

and Ker L(n, 0) =
{( 0

B

)
: B ∈ R

}
⊂ Hk;0.

(3) In this case, Ker M(k − j) = {0} for j = 0, . . . , k.

Remark: If dif(f) > 0, then dif(Nnf) = dif(f) − 1, dif(Lnf) = dif(f). The

same equalities hold in the case dif(f) = 0 and ProjHk;0
f =

( −A
kA

)
, with A 6= 0

(i.e., for ProjCk
f = 0).

4. MAIN RESULTS

In this section we present the different possibilities of annihilating terms in the
normal form:

ẋ = y,

ẏ =
∑

n≥2

(anxn + bnxn−1y). (21)

The results achieved are based in the relative position of the indices correspond-
ing to the first non-vanishing coefficients in the above normal form. This indices
will be denoted r, s. So, a2 = · · · = ar−1 = 0, ar 6= 0, and b2 = · · · = bs−1 = 0,
bs 6= 0.

To analyze how much we can simplify the above normal form by using transfor-
mations in the state variables, we will transform the above normal form into

ẋ = y,

ẏ =
∑

n≥2

(a∗nxn + b∗nxn−1y), (22)

where the coefficients a∗n, b∗n depend on the arbitrary constants parameterizing⊕
k≥1Kk. Later, these arbitrary constants will be selected in order to annihilate

the maximum number of coefficients a∗n, b∗n.
Under the above hypothesis, we have

N1 = · · · = Nr−2 = 0, Nr−1 6= 0, and
L1 = · · · = Ls−2 = 0, Ls−1 6= 0.
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From Theorem 13, one arbitrary constant Ah,i appears in the k-order terms of
the transformed vector field multiplied by:

∑

l>0,n∈Il,n
′∼n

h+|n|=k,i+|n′|=k+2

f̃h,n;i,n′ +
∑

l>0,n∈Il,n
′∼n

h+|n|=k,i+|n′|=k+1

ProjCk
f̃h,n;i,n′

Using Lemma 17, the summands of the above sum can be expressed as

f̃h,n;i,n′ = Hnl
MHnl−1 · · ·MHn1fh;i,

where fh;i ∈ Hh;h−i. As h ≥ 2, i = 0, 1, we find dif (fh;i) > 0. We seek for those
summands with zero or negative difference (in this case, the projection onto the
co-range is non-vanishing). Moreover, we are interested in the lower order where
the arbitrary constant Ah,i appears. This will depend on the expression of Hnj

(see (12), (13)).
When we apply MNr−1 to an element, its difference decreases two unities

and its order increases r − 1 unities. That is, dif(MNr−1f) = dif(f) − 2 and
ord(MNr−1f) = ord(f)+r−1, whenever the projection of f into the co-range van-
ishes (see Remark after Lemma 19). On the other hand, when applying MLs−1,
the difference decreases one unity and the order increases s − 1. Consequently,
looking at the decreasing of the difference, the operators MNr−1, MLs−1MLs−1

have the same effect.
To determine the lower order where Ah,i appears, we must distinguish three

cases:

(1) r < 2s−1. In this case, we must pay attention to the appearance of MNr−1

instead MLs−1MLs−1, because the first operation increases less the order than
the second one.

(2) r = 2s − 1. Now, the effect on the increasing of the order of MNr−1 and
MLs−1MLs−1 is the same and we must deal with both.

(3) r > 2s− 1. Here, we focus in the summands where MLs−1MLs−1 (instead
MNr−1) appear.

Before dealing with each one of these cases, we will see that the arbitrary con-
stants A1,0, A1,1 (parameterizing K1), can not be used to annihilate terms in the
normal form. Namely, A1,0 do not appear and A1,1 can only be used to rescaling.

Lemma 20. The arbitrary constant A1,0 do not appear in the normal form (22).

Proof. The constant A1,0 appear in the normal form (22) in the following
terms:

• ProjCk+1
Nkf1;0, in the k + 1 order terms,

• P(LkMNmf1;0), and ProjCk+m+1
P(LkMLmf1;0) in the k+m+1 order terms,
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• P(LnMLkMLmf1;0), in the k + m + n + 1 order terms, for any k, m, n ∈ N,

where f1;0 =
( 1

0
)
∈ H1,1.

The above mentioned elements vanish, and consequently the quoted arbitrary
constant do not appear in the transformed vector field.

Lemma 21. The arbitrary constant A1,1 can be used in the normal form (22)
only to rescaling.

Proof. The change of variables corresponding to a generator

U = A1,1f1;1 = A1,1 (x∂x + y∂y) ,

is given by
(

x̃
ỹ

)
= eA1,1

(
x
y

)
,

and so A1,1 can be used only to rescaling some term in the normal form.

Next, we analyze the different cases for the hypernormal form of system (21).

4.1. Case I: r < 2s − 1.
In this case, there are different possibilities in the simplifications. We will con-

sider two subcases:

4.1.1. Subcase I.1: s < r < 2s − 1.

To analyze how each arbitrary constant Ah,i appear in the transformed vector
field v∗, we deal with the cases h = 2n even and h = 2n + 1 odd separately.

The main results we have obtained appear detailed in Appendix A.1. Here, we
present one of the cases, that corresponds to the first appearance of each arbitrary
constant in v∗.

(A) Role of A2n,1, n ≥ 1.

Lemma 22. Let λ = n(r + 1)− 1. Then, the vector field (21) is C∞–conjugate
to (22), where

a∗k = ak, for k = 2, . . . , λ + s− 1,

b∗k = bk, for k = 2, . . . , λ,

a∗λ+s = aλ+s + A2n,1a
2n,1
1 ,

b∗λ+1 = bλ+1 + A2n,1a
2n,1
2 ,
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where

a2n,1
1 = Π1P(Ls−1MNr−1

n· · · MNr−1f2n,1), (23)

a2n,1
2 = Π2ProjCλ+1

Nr−1MNr−1
n−1· · · MNr−1f2n,1. (24)

Moreover, A2n,1 appear linearly in the normal form coefficients up to order
µ = (2n − 1)(r + 1) + s − 1. In the Appendix A.1 we will show that we can
know how it appears and then different possibilities to annihilating normal form
coefficients are obtained.

(B) Role of A2n,0 ∈ R, n ≥ 1.

Lemma 23. Let λ = n(r+1)+s−2. Then, the vector field (21) is C∞–conjugate
to (22), with

a∗k = ak, for k = 2, . . . , λ + r − s,

b∗k = bk, for k = 2, . . . , λ,

a∗λ+r−s+1 = aλ+r−s+1 + A2n,0a
2n,0
1 ,

b∗λ+1 = bλ+1 + A2n,0a
2n,0
2 , for k = λ + 1, . . . , µ,

where

a2n,0
1 = = Π1

(
Nr−1MNr−1

n· · · MNr−1f2n,0

)
, (25)

a2n,0
2 = Π2ProjCλ+1

P(Ls−1MNr−1
n· · · MNr−1f2n,0). (26)

In Appendix, we will carry out a deeper study, and we will show that A2n,0

appear linearly in the normal form coefficients up to order µ = 2n(r+1)+s−3. This
allow different possibilities to select the normal form coefficients to be annihilated.

(C) Role of A2n+1,1 ∈ R, n ≥ 1.

Lemma 24. Let λ = n(r+1)+s−1. Then, the vector field (21) is C∞–conjugate
to (22), where

a∗k = ak, for k = 2, . . . , λ + r − s,

b∗k = bk, for k = 2, . . . , λ,

a∗λ+r−s+1 = aλ+r−s+1 + A2n+1,1a
2n+1,1
1 ,

b∗λ+1 = bλ+1 + A2n+1,1a
2n+1,1
2 ,
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where

a2n+1,1
1 = Π1

(
Nr−1MNr−1

n· · · MNr−1f2n+1,1

)
, (27)

a2n+1,1
2 = Π2ProjCλ+1

P(Ls−1MNr−1
n· · · MNr−1f2n+1,1). (28)

As in the above cases, we will later show that A2n+1,1 appears linearly in the
normal form up to order µ = 2n(r + 1) + s− 1.

(D) Role of A2n−1,0 ∈ R, n ≥ 2.

Lemma 25. Let λ = (n − 1)(r + 1) + 2s − 2. Then, the vector field (21) is
C∞–conjugate to (22), with

a∗k = ak, for k = 2, . . . , λ + r − s,

b∗k = bk, for k = 2, . . . , λ,

a∗λ+r−s+1 = aλ+r−s+1 + A2n−1,0a
2n−1,0
1 ,

b∗λ+1 = bλ+1 + A2n−1,0a
2n−1,0
2 ,

where

a2n−1,0
1 = Π1P(Ls−1MNr−1

n· · · MNr−1f2n−1,0), (29)

a2n−1,0
2 = Π2ProjCλ+1

P(Ls−1MLs−1MNr−1
n−1· · · MNr−1f2n−1,0). (30)

In this case, A2n−1,0 appears linearly up to order µ = 2(n−1)(r +1)+ r+s−2.

(E) Statement of the main result.

The information achieved in the four items above provides the following result.

Theorem 26. Let us consider the vector field (21), with a2 = · · · = ar−1 =
0, ar 6= 0, b2 = · · · = bs−1 = 0, bs 6= 0 where r < 2s − 1. Then, the quoted vector
field is C∞–conjugate to (22), where

(i) • a∗k = ak for k = 2, . . . , r + s− 1.

•b∗k = bk for k = 2, . . . , r.
(ii) •a∗r+s = 0 or b∗r+1 = 0, whenever r 6= s + 1. If r = s + 1, there is only

one possibility: b∗r+1 = 0.

•a∗2r = 0 or b∗r+s = 0.



402 A. ALGABA ET AL.

•a∗2r+1 = 0 or b∗r+s+1 = 0.
(iii)For each n ≥ 2, we can choose a case of simplifications of item (a), and

another of item (b), listed below:

(a-1) b∗n(r+1) = 0 whenever a2n,1
2 6= 0; and b∗2s−r−2+n(r+1) = 0 whenever

a2n−1,0
2 6= 0.

(a-2) b∗n(r+1) = 0 whenever a2n,1
2 6= 0; and a∗s−2+n(r+1) = 0 whenever a2n−1,0

1 6=
0.

(a-3) a∗s−2+n(r+1) = 0 whenever a2n−1,0
1 6= 0; and a∗s−1+n(r+1) = 0 whenever

a2n,1
1 6= 0.

(b-1) b∗s−1+n(r+1) = 0 whenever a2n,0
2 6= 0; and b∗s+n(r+1) = 0 whenever

a2n+1,1
2 6= 0.

(b-2) a∗r−1+n(r+1) = 0 whenever a2n,0
1 6= 0; and b∗s+n(r+1) = 0 whenever

a2n+1,1
2 6= 0.

(b-3) b∗s−1+n(r+1) = 0 whenever a2n,0
2 6= 0; and a∗r+n(r+1) = 0 whenever

a2n+1,1
1 6= 0.

(b-4) a∗r−1+n(r+1) = 0 whenever a2n,0
1 6= 0; and a∗r+n(r+1) = 0 whenever

a2n+1,1
1 6= 0.

The constants ah,i
j are given in (23), (24), (25), (26), (27), (28), (29), (30).

Proof. Item (i) is straightforward. To prove item (ii), we firstly perform some
calculations and obtain:

a2,1
1 = 2(1− r + s)arbs/(s(s + 1)),

a2,1
2 = −3ar,

a2,0
1 = −(r + s + 1)a2

r/(r + 1),

a2,0
2 = −(r + s)arbs/(r + 1),

a3,1
1 = −2(r − 1)(r + 3)a2

r/((r + 1)(r + 2)),

a3,1
2 = (−rs2 − r2s− 5s2 − 2rs + 9r2 + 3s + 27r + 18)arbs/(s(r + 1)(r + 2)).

In the hypothesis of item (ii), the above constants do not vanish, and it is enough
to select A2,0, A2,1, A3,1 to fulfill the proof.

We focus in the proof of item (iii). First, we transform the vector field v as
indicated in Lemma 22. We obtain the transformed vector field v∗ given in (22),
where

a∗k = ak, for k = 2, . . . s− 2 + n(r + 1),
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a∗s−1+n(r+1) = as−1+n(r+1) + A2n,1a
2n,1
1 ,

b∗k = bk, for k = 2, . . . , n(r + 1)− 1,

b∗n(r+1) = bn(r+1) + A2n,1a
2n,1
2 ,

with a2n,1
1 , a2n,1

2 given in (23), (24), respectively. Next, we transform v∗ as in
Lemma 25. We obtain now v∗∗, which is also in normal form, and whose coefficients
are

a∗∗k = a∗k, for k = 2, . . . , s− 3 + n(r + 1),

a∗∗s−2+n(r+1) = a∗s−2+n(r+1) + A2n−1,0ã
2n−1,0
1 ,

b∗∗k = b∗k, for k = 2, . . . , n(r + 1) + r − 3,

b∗∗2s−r−2+n(r+1) = b∗2s−r−2+n(r+1) + A2n−1,0ã
2n−1,0
2 .

As a∗r = ar, b∗s = bs, we deduce ã2n−1,0
1 = a2n−1,0

1 , ã2n−1,0
2 = a2n−1,0

2 . Moreover,
these constants are given in (29), (30). The possibilities of annihilating terms in
v∗∗ are summarized as follows:

• In the case a2n,1
2 6= 0, we can select A2n,1 = −bn(r+1)/a2n,1

2 , and then b∗∗n(r+1) =

b∗n(r+1) = 0 for r 6= 2s − 2. If a2n−1,0
2 6= 0, then taking A2n−1,0 adequately,

we can annihilate b∗∗2s−r−2+n(r+1). For r = 2s − 2 (where the indices n(r + 1),

2s − r − 2 + n(r + 1) agree), we can do b∗n(r+1) = 0 assuming a2n,1
2 6= 0, and the

second transformation is not necessary.
• Assuming a2n,1

2 6= 0, we can achieve b∗∗n(r+1) = b∗n(r+1) = 0 for r 6= 2s − 2.

Analogously, if a2n−1,0
1 6= 0, we can vanish a∗∗s−2+n(r+1).

Item (a-3), and the remaining case of (a-2), are obtained by applying consecu-
tively Lemmas 25, 22; and then selecting A2n−1,0, A2n,1 in order to achieve the
corresponding simplifications. The reasoning to prove item (b) is the same, but ap-
plying now Lemmas 23, 24 and taking A2n,0, A2n+1,1 in a convenient way. Similar
comments hold for items (b-3), (b-4).

Finally, it is necessary to remark that each step in the procedure do not affect
to the terms we have annihilated in previous steps.

4.1.2. Subcase I.2: r ≤ s.

The analysis of the remaining cases can be accomplished following a parallel
scheme to the above one. The results presented below can be greatly proved
analogously to the above ones, so that we only include in some cases the main
differences with the case I.1.
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In the case I.2, we consider that a2 = · · · = ar−1 = 0, ar 6= 0, b2 = · · · = bs−1 =
0, bs 6= 0, with r ≤ s.

The analysis of how the arbitrary constants Ah,i affect the transformed vector
field is carried out in next items. Their proofs are similar to the above subcase.
For this reason, we do not include them.

(A) Role of A2n,1, n ≥ 1.

Lemma 27. Let n ∈ N. Then, the vector field (21) is C∞–conjugate to (22),
where

(a)If nr + n ≤ s, then

a∗k = ak, for k = 2, . . . , 2n + 2nr − 2,

b∗k = bk, for k = 2, . . . , nr + n− 1,

b∗nr+n = bnr+n + A2n,1a
2n,1
2 .

In this case, the arbitrary constant A2n,1 appears for the first time in the expres-
sion of a∗2n+2nr−1 in a nonlinear way.

(b)If nr + n ≥ s + 1, then

a∗k = ak, for k = 2, . . . , n + nr + s− 2,

a∗n+nr+s−1 = an+nr+s−1 + A2n,1a
2n,1
1 ,

b∗k = bk, for k = 2, . . . , nr + n− 1,

b∗nr+n = bnr+n + A2n,1a
2n,1
2 .

The constants a2n,1
1 , a2n,1

2 are given in (23), (24), respectively.

(B) Role of A2n,0 ∈ R, n ≥ 1.

Lemma 28. Let n ∈ N. Then, the vector field (21) is C∞–conjugate to (22),
where

a∗k = ak, for k = 2, . . . , n + nr + r − 2,

a∗n+nr+r−1 = an+nr+r−1 + A2n,0a
2n,0
1 ,

b∗k = bk, for k = 2, . . . , n + nr + s− 2,

b∗n+nr+s−1 = bn+nr+s−1 + A2n,0a
2n,0
2 ,

where the expressions of a2n,0
1 , a2n,0

2 are given in (25), (26).
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(C) Role of A2n+1,1 ∈ R, n ≥ 1.

Lemma 29. Let n ∈ N. Then, the vector field (21) is C∞–conjugate to (22),
where

a∗k = ak, for k = 2, . . . , n + nr + r − 1,

a∗n+nr+r = an+nr+r + A2n+1,1a
2n+1,1
1 ,

b∗k = bk, for k = 2, . . . , n + nr + s− 1,

b∗n+nr+s = bn+nr+s + A2n+1,1a
2n+1,1
2 ,

where a2n+1,1
1 , a2n+1,1

2 appear in (27), (28).

(D) Role of A2n−1,0 ∈ R, n ≥ 2.

Lemma 30. Let n ∈ N. Then, the vector field (21) is C∞–conjugate to (22),
where

(a)If nr + n− 1 ≤ s, then

a∗k = ak, for k = 2, . . . , n + nr + s− 3,

a∗n+nr+s−2 = an+nr+s−2 + A2n−1,0a
2n−1,0
1 ,

b∗k = bk, for k = 2, . . . , 2n + 2nr − r + s− 4.

Here, the arbitrary constant A2n−1,0 appears for the first time in b∗2n+2nr−r+s−3,
but in a nonlinear way.

(b)If nr + n− 1 ≥ s + 1, then

a∗k = ak, for k = 2, . . . , n + nr + s− 3,

a∗n+nr+s−2 = an+nr+s−2 + A2n−1,0a
2n−1,0
1 ,

b∗k = bk, for k = 2, . . . , n + nr − r + 2s− 3,

b∗n+nr−r+2s−2 = bn+nr−r+2s−2 + A2n−1,0a
2n−1,0
2 .

The constants a2n−1,0
1 , a2n−1,0

2 are given in (29), (30).
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(E) Statement of the main results.

To obtain the results by applying these lemmas, it is necessary to distinguish
different cases, depending on the relation between r and s.

Theorem 31. Assume that s− r 6≡ 1, 2 (mod r + 1).
Let m = min {j ∈ N : j(r + 1) ≥ s}. Then, the vector field (21) is C∞–conjugate

to (22), where

(i) • a∗k = ak, for k = 2, . . . , 2r − 1,

•b∗k = bk, for k = 2, . . . ,m(r + 1)− 1.
(ii)For n ≥ m, we can achieve b∗n(r+1) = 0 whenever a2n,1

2 6= 0.

(iii)For n ≥ 1, we can get a∗n(r+1)+r−1 = 0 whenever a2n,0
1 6= 0, or b∗n(r+1)+s−1 =

0 whenever a2n,0
2 6= 0.

(iv)For n ≥ 1, we can obtain a∗n(r+1)+r = 0 whenever a2n+1,1
1 6= 0, or b∗n(r+1)+s =

0 whenever a2n+1,1
2 6= 0.

(v)For n ≥ 2, we can obtain a∗n(r+1)+s−2 = 0 whenever a2n−1,0
1 6= 0.

Theorem 32. Assume that s− r ≡ 1(mod r + 1), that is, s = r + 1 + j(r + 1).
Then, the vector field (21) is C∞–conjugate to (22), where

(i) • a∗k = ak for k = 2, . . . , 2r − 1,

•b∗k = bk for k = 2, . . . , (j + 1)(r + 1)− 2.
(ii)For n ≥ j + 1, we can achieve b∗n(r+1) = 0 whenever a2n,1

2 6= 0.

(iii)For n ≥ 1, we can get a∗n(r+1)+r = 0 whenever a2n+1,1
1 6= 0, or b∗(n+j+1)(r+1) =

0 whenever a2n+1,1
2 6= 0.

(iv)For n = 1, . . . , 2j + 1, we can obtain a∗n(r+1)+r−1 = 0 if a2n,0
1 6= 0, or

b∗(n+j+1)(r+1)−1 = 0 whenever a2n,0
2 6= 0.

(v)For n ≥ j +2, we can obtain a∗(n+j)(r+1)+r−1 = b∗(n+2j)(r+1)+r = 0, whenever

a
2(n+j),0
1 a2n−1,0

2 − a
2(n+j),0
2 a2n−1,0

1 6= 0. If this expression vanishes, there are two
possibilities: a∗(n+j)(r+1)+r−1 = 0 whenever a

2(n+j),0
1 6= 0 or a2n−1,0

1 6= 0; or

b∗(n+j)(r+1)+s−1 = 0 whenever a
2(n+j),0
2 6= 0.

Theorem 33. Assume that s− r ≡ 2(mod r + 1), that is s = r + 2 + j(r + 1).
Then, the vector field (21) is C∞–conjugate to (22), where

(i) • a∗k = ak, for k = 2, . . . , 2r − 1,

•b∗k = bk, for k = 2, . . . , (j + 2)(r + 1)− 2.
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(ii)For n ≥ j + 2, we can achieve b∗n(r+1) = 0 whenever a2n,1
2 6= 0.

(iii)For n ≥ 1, we can get a∗n(r+1)+r−1 = 0, whenever a2n,0
1 6= 0, or b∗(n+j+1)(r+1) =

0 whenever a2n,0
2 6= 0.

(iv)For n = 1, . . . , 2j + 1, we can obtain a∗n(r+1)+r = 0 if a2n+1,1
1 6= 0, or

b∗(n+j+1)(r+1)+1 = 0 whenever a2n+1,1
2 6= 0.

(v)For n ≥ j +2, we can obtain a∗(n+j)(r+1)+r = b∗(n+2j+1)(r+1)+1 = 0, whenever

a
2(n+j)+1,1
1 a2n−1,0

2 − a
2(n+j)+1,1
2 a2n−1,0

1 6= 0. If this expression vanishes, there are
two possibilities: a∗(n+j)(r+1)+r = 0 whenever a

2(n+j)+1,1
1 6= 0 or a2n−1,0

1 6= 0; or

b∗(n+j)(r+1)+s = 0 whenever a
2(n+j)+1,1
2 6= 0.

4.2. Case II: r = 2s − 1.
In the situation we analyze now, the first nonzero normal form coefficients are

a2s−1, bs. Next lemmas show how the arbitrary constants appear in the normal
form. An outline of its proofs appears in Appendix A.2.

(A) Role of A2n,1, n ≥ 1.

Lemma 34. Let n ∈ N. Then, the vector field (21) is C∞–conjugate to (22),
where

a∗k = ak, for k = 2, . . . , 2ns + s− 2,

a∗2ns+s−1 = a2ns+s−1 + A2n,1a
2n,1
1 ,

b∗k = bk, for k = 2, . . . , 2ns− 1,

b∗2ns = b2ns + A2n,1a
2n,1
2 ,

where

a2n,1
1 = Π1

∑

n∈Il,n
′∼n

nj=s−1,n′j=s;nj=2s−2;n′j=2s

2n+|n|=2ns+s−1,1+|n′|=2ns+s+1

f̃2n,n;1,n′ , (31)

a2n,1
2 = Π2

∑

n∈Il,n
′∼n

nj=s−1,n′j=s;nj=2s−2;n′j=2s

2n+|n|=2ns,1+|n′|=2ns+1

ProjC2ns
f̃2n,n;1,n′ . (32)
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(B) Role of A2n,0 ∈ R, n ≥ 1.

Lemma 35. Let n ∈ N. Then, the vector field (21) is C∞–conjugate to (22),
where

a∗k = ak, for k = 2, . . . , 2ns + 2s− 3,

a∗2ns+2s−2 = a2ns+2s−2 + A2n,0a
2n,0
1 ,

b∗k = bk, for k = 2, . . . , 2ns + s− 2,

b∗2ns+s−1 = b2ns+s−1 + A2n,0a
2n,0
2 ,

where

a2n,0
1 = Π1

∑

n∈Il,n
′∼n

nj=s−1,n′j=s;nj=2s−2;n′j=2s

2n+|n|=2ns+2s−2,|n′|=2ns+2s

f̃2n,n;0,n′ , (33)

a2n,0
2 = Π2

∑

n∈Il,n
′∼n

nj=s−1,n′j=s;nj=2s−2;n′j=2s

2n+|n|=2ns+s−1,|n′|=2ns+s

ProjC2ns+s−1
f̃2n,n;0,n′ . (34)

(C) Role of A2n+1,1 ∈ R, n ≥ 1.

Lemma 36. Let n ∈ N. Then, the vector field (21) is C∞–conjugate to (22),
where

a∗k = ak, for k = 2, . . . , 2ns + 2s− 2,

a∗2ns+2s−1 = a2ns+2s−1 + A2n+1,1a
2n+1,1
1 ,

b∗k = bk, for k = 2, . . . , 2ns + s− 1,

b∗2ns+s = b2ns+s + A2n+1,1a
2n+1,1
2 ,

where

a2n+1,1
1 = Π1

∑

n∈Il,n
′∼n

nj=s−1,n′j=s;nj=2s−2;n′j=2s

2n+1+|n|=2ns+2s−1,1+|n′|=2ns+2s+1

f̃2n+1,n;1,n′ , (35)

a2n+1,1
2 = Π2

∑

n∈Il,n
′∼n

nj=s−1,n′j=s;nj=2s−2;n′j=2s

2n+1+|n|=2ns+s,1+|n′|=2ns+s+1

ProjC2ns+s
f̃2n+1,n;1,n′ . (36)
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(D) Role of A2n−1,0 ∈ R, n ≥ 2.

Lemma 37. Let n ∈ N. Then, the vector field (21) is C∞–conjugate to (22),
where

a∗k = ak, for k = 2, . . . , 2(n + 1)s + s− 3,

a∗2(n+1)s+s−2 = a2(n+1)s+s−2 + A2n+1,0a
2n+1,0
1 ,

b∗k = bk, for k = 2, . . . , 2(n + 1)s− 2,

b∗2(n+1)s−1 = b2(n+1)s−1 + A2n+1,0a
2n+1,0
2 ,

where

a2n+1,0
1 = Π1

∑

n∈Il,n
′∼n

nj=s−1,n′j=s;nj=2s−2;n′j=2s

2n+1+|n|=2(n+1)s+s−2,|n′|=2(n+1)s+s

f̃2n+1,n;0,n′ , (37)

a2n+1,0
2 = Π2

∑

n∈Il,n
′∼n

nj=s−1,n′j=s;nj=2s−2;n′j=2s

2n+1+|n|=2(n+1)s−1,|n′|=2(n+1)s

ProjC2(n+1)s−1
f̃2n+1,n;0,n′ . (38)

(E) Statement of the main result.

The above information yields the following result.

Theorem 38. Let us consider the vector field (21), with a2 = · · · = a2s−2 = 0,
a2s−1 6= 0, b2 = · · · = bs−1 = 0, bs 6= 0. Then, the quoted vector field is C∞–
conjugate to (22), where

(i) • a∗k = ak for k = 2, . . . , 3s− 2.

•b∗k = bk for k = 2, . . . , 2s− 1.
(ii)For n ≥ 1, we can achieve

•b∗2ns = 0 whenever a2n,1
2 6= 0, or a∗2ns+s−1 = 0 whenever a2n,1

1 6= 0.

•b∗2ns+s−1 = 0 whenever a2n,0
2 6= 0, or a∗2ns+2s−2 = 0 whenever a2n,0

1 6= 0.

•b∗2ns+s = 0 whenever a2n+1,1
2 6= 0, or a∗2ns+2s−1 = 0 whenever a2n+1,1

1 6= 0.

•b∗2ns+2s−1 = 0 whenever a2n+1,0
2 6= 0, or a∗2ns+3s−2 = 0 whenever a2n+1,0

1 6=
0.
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The constants ah,i
j are defined in (31), (32), (33), (34), (35), (36), (37), (38).

Proof. It is enough to apply successively Lemmas 34, 35, 36, 37, for each
n ≥ 1.

4.3. Case III: r > 2s − 1.

The last case corresponds to the situation when the first nonzero normal form
coefficients are ar, bs, with r > 2s− 1. Next, we show how an arbitrary constant
Ah,0 appears in the transformed vector field. The proofs appears in Appendix A.3.

(A) Role of Ah,0, h ≥ 1.

Lemma 39. Let h ∈ N, h ≥ 2. Then, the vector field (21) is C∞–conjugate to
(22), where

a∗k = ak, for k = 2, . . . , hs + 2r − 2s− 1,

a∗hs+2r−2s = ahs+2r−2s + Ah,0a
h,0
1 ,

b∗k = bk, for k = 2, . . . , hs + r − s− 1,

b∗hs+r−s = bhs+r−s + Ah,0a
h,0
2 ,

where

ah,0
1 = Π1P(Nr−1MNr−1MLs−1

h−2· · · MLs−1fh,0), (39)

ah,0
2 = Π2ProjChs+r−s

P(Nr−1MLs−1
h−1· · · MLs−1fh,0). (40)

(B) Role of Ah,1, h ≥ 1.

Lemma 40.

Let h ∈ N, h ≥ 2. Then, the vector field (21) is C∞–conjugate to (22), where

a∗k = ak, for k = 2, . . . , hs + r − s− 1,

a∗hs+r−s = ahs+r−s + Ah,1a
h,1
1 ,

b∗k = bk, for k = 2, . . . , hs− 1,

b∗hs = bhs + Ah,1a
h,1
2 ,
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where

ah,1
1 = Π1P(Nr−1MLs−1

h−1· · · MLs−1fh,1), (41)

ah,1
2 = Π2ProjChs

(
Ls−1MLs−1

h−1· · · MLs−1fh,1

)
. (42)

(E) Statement of the main results.

In this case, we must distinguish two cases, depending on the r and s.

Theorem 41. Assume that r − s is not a multiple of s (r − s 6= ms, for any
m ≥ 1). Then, the vector field (21) is C∞–conjugate to (22), where

(i) • a∗k = ak, for k = 2, . . . , r + s− 1.

•b∗k = bk, for k = 2, . . . , 2s− 1.
(ii)For each h ≥ 2, we can obtain

•a∗hs+r−s = 0 whenever ah,1
1 6= 0, or b∗hs = 0 whenever ah,1

2 6= 0,

•a∗hs+2r−2s = 0 whenever ah,0
1 6= 0, or b∗hs+r−s = 0 whenever ah,0

2 6= 0.

The constants ah,i
j are defined in (39), (40), (41), (42).

Proof. We can write r = s + ms + m̃, with m ≥ 1 and 0 < m̃ < s. We apply
successively Lemma 40 for h = 2, . . . , m + 1. Each time we apply the lemma,
we take Ah,1 in order to annihilate a∗hs+r−s if ah,1

1 6= 0, or b∗hs if ah,1
2 6= 0. This

procedure does not alter the terms annihilated in previous steps.
Next, we apply also Lemma 40 with h = m + 2 and choose Am+2,1 so that

a∗(m+2)s+r−s = 0 or b∗(j+2)s = 0. Using now Lemma 39 with h = 2, we can
annihilate a∗2r or b∗r+s selecting adequately A2,0.

Later, we apply Lemma 40 with h = m + 3 and Lemma 39 with h = 3, and so
on. In this way, we fulfill the proof.

The remaining case, considered in the next theorem, can be proved analogously.

Theorem 42. Assume that r − s is a multiple of s: r = s + ms, for some
m ≥ 1. Then, the vector field (21) is C∞–conjugate to (22), where

(i) • a∗k = ak, for k = 2, . . . , (2 + m)s− 1.

•b∗k = bk, for k = 2, . . . , 2s− 1.
(ii)For each h = 2, . . . , m+1, we can obtain a∗hs+r−s = 0 whenever ah,1

1 6= 0, or
b∗hs = 0 whenever ah,1

2 6= 0.
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(iii)For each h ≥ 2, we can achieve b∗(h+m)s = a∗(h+2m)s = 0 whenever ah,0
1 ah+m,1

2 −
ah,0
2 ah+m,1

1 6= 0. If this expression vanishes, we have two possibilities: a∗(h+2m)s = 0

whenever ah+m,1
1 6= 0 or ah,0

1 6= 0; or b∗(h+m)s = 0 whenever ah+m,1
2 6= 0 or ah,0

2 6= 0.

The constants ah,i
j are defined in (39), (40), (41), (42).

5. RECURSIVE COMPUTATION OF THE CONSTANTS AH,I
J

The constants ah,i
j that appear in the hypothesis of the theorems in the previous

section can be explicitly computed using recursive procedures.
Up to the order we have been able to compute, we have found ah,i

1 6= 0 or ah,i
2 6= 0

(although we have not proved it, we conjecture that this is always true). So, we
have used each arbitrary constant Ah,i to annihilate one normal form coefficient,
and we can assure that the normal forms obtained are the simplest ones.

To determine the structure of the hypernormal form, it is not necessary to
compute such constants, but only to know if they vanish or not. Nevertheless,
for the computation of the hypernormal form for a given vector field, we require
to know the values of these constants. For details, see the next section where we
present some examples.

We will focus in the computation of some constants in the hypothesis of theorems
of the above section. The remaining cases can be handled analogously.

Lemma 43. Let a2n,1
2 (p) = Π2

(
ProjC2n+np

NpMNp
n−1· · · MNpf2n,1.

)
, with n ≥

1. Then:

a2n,1
2 (p) = ap+1 ((−2n− (n− 1)p + 1)An − 2Bn) ,

where An, Bn satisfy the recursive algorithm:

A1 = 1, B1 = 1,

Ak+1 = αk (((pk + 2k)(−2n + 2k − 1) + (p + 1)) Ak + (−2n + 2k − 2)Bk) ,

Bk+1 = αk ((pk + 2k + 1)(p + 1)Ak + (pk + 2k + 1)(−2n + 2k − 2)Bk) ,

and αk =
ap+1

(pk + 2k)(pk + 2k + 1)
for k = 1, . . . , n− 1.

Proof. For k = 0, . . . , n − 1, let uk+1 = MNp
k· · · MNpf2n,1 =

(
Ak+1
Bk+1

)
∈

H2n+kp;2n−1−2k. As

a2n,1
2 (p) = Π2

(
ProjC2n+np

N(p, 1) ◦ un

)
=

= ap+1Π2

(
ProjC2n+np

( −An
(p + 1)An − 2Bn

))
,
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we get a2n,1
2 (p) = ap+1 ((−2n− (n− 1)p + 1)An − 2Bn).

It is enough to note that un can be computed recursively by:

u1 =
( 1

1
)

, uk+1 = M(k(p + 2)) ◦N(p, 2n− 1− 2(k − 1)) ◦ uk,

to derive the algorithm that appears in the statement of the lemma.

Remark: The constant a2n,1
2 that appears in the statement of Theorems 26,

Theorems 31, 32, 33, is just a2n,1
2 (r− 1) computed in the above lemma. Also, the

constant a2n,1
2 of Theorem 38 agrees with a2n,1

2 (2s− 2).

Next lemma can be proved as the above one:

Lemma 44. Let a2n+1,1
1 (p) = Π1

(
NpMNp

n· · · MNpf2n+1,1

)
, with n ≥ 1. Then:

a2n+1,1
1 (p) = ap+1((p + 1)An+1 −Bn+1),

where An+1, Bn+1 are given by the recursive algorithm:

A1 = 1, B1 = 1,

Ak+1 = αk (((pk + 2k)(−2n + 2k − 2) + (p + 1))Ak + (−2n + 2k − 3)Bk) ,

Bk+1 = αk ((pk + 2k + 1)(p + 1)Ak + (pk + 2k + 1)(−2n + 2k − 3)Bk) ,

being αk =
ap+1

(pk + 2k)(pk + 2k + 1)
for k = 1, . . . , n.

Remark: In this case, the constant a2n+1,1
1 of the statement of Theorems 26, 31,

32, 33, corresponds with a2n+1,1
1 (r− 1). Moreover, a2n+1,1

1 (2s− 2) agrees with the
constant a2n+1,1

1 of Theorem 38.

Lemma 45. Let a2n+1,0
1 (p, q) = Π1P(LqMNp

n+1· · · MNpf2n+1,0), with n ≥ 1.
Then:

a2n+1;0
1 (p, q) = A0 + A1 + · · ·+ An + An+1,

with:

(a)An+1 = −bq+1A
(1)
n+1, where A

(1)
n+1 is given by the recursive algorithm:

A
(1)
1 = −(2n + 1)ap+1, B

(1)
1 = (p + 1)ap+1, (43)

A
(1)
k+1 = α

(1)
k

(
(pk + 2k − 1)(−2n + 2k − 1)A(1)

k + (−2n + 2k − 1)B(1)
k

)
,

B
(1)
k+1 = α

(1)
k ((pk + 2k − 1)(p + 1)A(1)

k +

+(p + 1 + (pk + 2k)(−2n + 2k − 2))B(1)
k ),
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being α
(1)
k =

ap+1

(pk + 2k − 1)(pk + 2k)
for k = 1, . . . , n.

(b)For each j = 0, . . . , n, we have Aj = B
(2)
n+1, where B

(2)
n+1 is obtained from the

recursive algorithm:

A
(2)
j = bq+1(−2n + 2j − 1)A(3)

j , B
(2)
j = bq+1

(
pA

(3)
j + (−2n + 2j − 1)B(3)

j

)
,

A
(2)
k+1 = α

(2)
k

(
(pk + 2k + q)(−2n + 2k)A(2)

k + (−2n + 2k)B(2)
k

)
, (44)

B
(2)
k+1 = α

(2)
k ((pk + 2k + q)(p + 1)A(2)

k +

+(p + 1 + (pk + 2k + q + 1)(−2n + 2k − 1))B(2)
k ),

with α
(2)
k =

ap+1

(pk + 2k + q + 1)(pk + 2k + q)
for k = j, . . . , n; and A

(3)
j , B

(3)
j sat-

isfy:

A
(3)
0 = 1, B

(3)
0 = 0, (45)

A
(3)
k+1 = α

(3)
k (((p(k + 1) + 2k + 1)(−2n + 2k − 1) + p + 1)A(3)

k +

+(−2n + 2k − 2)B(3)
k ),

B
(3)
k+1 = α

(3)
k ((p(k + 1) + 2k + 2)(p + 1)A(3)

k +

+(p(k + 1) + 2k + 2)(−2n + 2k − 2)B(3)
k ),

where α
(3)
k =

ap+1

(p(k + 1) + 2k + 1)(p(k + 1) + 2k + 2)
for k = 0, . . . , j − 1.

Proof. Observe that

P(LqMNp
n+1· · · MNpf2n+1,0) =

n+1∑

j=0

NpM
n−j+1· · · NpMLqMNp

j· · · MNpf2n+1,0.

So, taking Aj = Π1(NpM
n−j+1· · · NpMLqMNp

j· · · MNpf2n+1,0) for j = 0, . . . , n+
1, we can write a2n+1,0

1 (p, q) = A0 + · · ·+ An+1.
To compute Aj , we deal separately with the cases j = n + 1 and j 6= n + 1 (see

item (3) of Lemma 4).

(a) If j = n + 1, then

An+1 = Π1

(
LqMProjR2n+1+(n+1)p

NpMNp
n· · · MNpf2n+1,0

)
.

Denote

u
(1)
k = NpMNp

k−1· · · MNpf2n+1,0 =

(
A

(1)
k

B
(1)
k

)
∈ H2n+1+kp;2n−2(k−1),
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for k = 1, . . . , n + 1. Then,

u
(1)
1 = ap+1

( −(2n + 1)
p + 1

)
, (46)

u
(1)
k+1 = N(p, 2n + 1− 2k) ◦M(k(p + 2)− 1) ◦ u

(1)
k .

To derive the algorithm (43), it is enough to observe that

An+1 = Π1

(
L(q,−1) ◦M(2n + 1 + (n + 1)p) ◦ ProjR2n+1+(n+1)p

u
(1)
n+1

)
=

= −bq+1A
(1)
n+1,

where A
(1)
n+1 are obtained from (46).

(b) To obtain Aj (j = 0, . . . , n), we define

u
(3)
k = MNp

k· · · MNpf2n+1,0 =

(
A

(3)
k

B
(3)
k

)
∈ H2n+1+kp;2n+1−2k,

for k = 0, . . . , j. Once we have u
(3)
j , we build u

(2)
j = Lqu

(3)
j , and then

u
(2)
k = NpM

k−j· · · NpMu
(2)
j =

(
A

(2)
k

B
(2)
k

)
∈ H2n+1+kp+q;2n+1−2k,

for k = j + 1, . . . , n + 1. Notice that Aj = Π1u
(2)
n+1 = B

(2)
n+1. Moreover:

(1) u
(3)
0 =

( 1
0

)
, and u

(3)
k+1 = M((k + 1)(p + 2) − 1) ◦N(2n + 1 − 2k) ◦ u

(3)
k ,

for k = 0, . . . , j − 1. These relations provide the algorithm (45).

(2) u
(2)
j = bq+1

(
(−2n + 2j − 1)A(3)

j

pA
(3)
j + (−2n + 2j − 1)B(3)

j

)
, and u

(2)
k+1 = N(p, 2n− 2k) ◦

M(k(p + 2) + q) ◦ u
(2)
k , for k = j, . . . , n. The algorithm (44) is derived from these

relations.

Remark: Taking p = r − 1 and q = s − 1 in the above lemma, we obtain the
constant a2n+1,0

1 of Theorems 26, 31, 32, 33. Also, with p = 2s− 2 and q = s− 1
we get the constant a2n+1,0

1 of Theorem 38.

In the same way, we can obtain recursive algorithms to compute the constants
that appear in the hypothesis of the remaining theorems of the above section.
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6. EXAMPLES

In this last section, we will obtain some hypernormal forms. The reason for
including this section is not only to describe the structure of the hypernormal
form in some specific cases. The main objective is to show how our approach is
useful to compute the expressions for the hypernormal form coefficients.

We will assume that the system (1) has been put previously in normal form.
Then, we deal with the vector field (4), and our conditions will be given on the
normal form coefficients an, bn. The recursive computation of these coefficients is
addressed in Gamero et al. [7].
Example 1: Case I.1.

Consider the vector field (4), with a2 = a3 = a4 = a5 = 0, a6 6= 0, b2 = b3 = 0,
b4 6= 0. Among the possibilities presented in Theorem 26 we will consider here one
obtained by using items (a-2), (b-1) Different hypernormal forms can be obtained
using other items.

We have computed the constants ah,i
j (which appear in the items (a-2), (b-1) of

Theorem 26) for h = 1, . . . , 20, and they are nonzero. Then, a hypernormal form
up to order 146 is

v∗ = y∂x +


a∗9x

9 +
146∑

n=6

n6=7k+2

a∗nxn +
146∑

n=4

n6=7k,n 6=7k+3,n 6=7k+4

b∗nxn−1y


 ∂y. (47)

Moreover, the expressions for the coefficients up to order 11, are:

b∗4 = b4, b∗5 = b5, b∗6 = b6, a∗6 = a6, a∗7 = a7,

a∗8 = a8, b∗8 = b8 −
(
10a7b7 + b2

4b7

)
/ (10a6) ,

a∗9 = a9, b∗9 = b9 − (5a8b7 + b4b5b7) /5a6,

a∗10 = a10 − (b4b7) /30, a∗11 = a11 − (a7b4b7) / (15a6) ,

The expressions for the coefficients of order greater than 11 are omitted for the
sake of brevity.

We summarize below the procedure used in this example (see Section 4):
First, we compute the generator which depends only on A2,1. We denote U

[j]
k

the part of the k-degree homogeneous terms of this generator depending on the
power j of A2,1. Obviously, UNL

k =
∑

j≥2 U
[j]
k .

The expressions for UL
k (see (16) with Ah,i = 0, h 6= 2, i 6= 1) are:

UL
1 = 0, UL

2 = A2,1f2,1, UL
3 = UL

4 = 0.
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In the following, we will denote with f2;1 = A2,1f2,1 ∈ H2;1. With this notation,

UL
5 = ML3f2;1, UL

6 = ML4f2;1, UL
7 = (MN5 + ML5)f2;1.

Taking UNL
k = 0 for k = 1, . . . , 7, we have J 7v∗ = J 7v + ṽ7, where

ṽ7 = ProjC7N5f2;1 = −3a6A2,1x
6y∂y.

In the sequel, we denote L̃, Ñ the operators associated to the vector field ṽ.
One can see that, if dif ([[vj , Ul], Uk]) ≤ 0 (i. e., its projection onto the co-range

may be nonzero), then its order is at least 11. Consequently, A2
2,1 appears in b∗11

and in the higher order terms of v∗. In the same way, looking at the triple Lie
products, we can show that A3

2,1 appears in b∗14 and in the higher order terms of
v∗. Also, A4

2,1 appears in the terms of v∗ of order greater than 18, and so on.
As we are interested in the transformed vector field up to order 11, we neglect

the terms of order greater than 2 in A2,1. So, we do not consider the Lie products
involving more than 2 functions, neither U

[j]
k with j ≥ 2 in the generator.

Taking U8 = UL
8 + U

[2]
8 , with U

[2]
8 =

1
2
ML̃6f2;1, we find v∗8 = v8 + ṽ8, where

ṽ8 = ProjC8(N6 + L3ML3)f2;1 = (−3a7 − 3
10b2

4)A2,1x
7y∂y.

The terms of order 9 in the generator are U9 = UL
9 + U

[2]
9 +O(3), where U

[2]
9 =

1
2ML̃7f2;1. So, we have v∗9 = v9 + ṽ9, with ṽ9 = ProjC9 (N7 + P(L3ML4)) f2;1,
and then v∗9 = v9 + (−3a8 − 3

5b4b5)A2,1x
8y∂y.

The terms of order 10 in the generator are U10 = UL
10 + U

[2]
10 + O(3), with

U
[2]
10 = 1

2ML̃8f2;1. Then, v∗10 = v10 + ṽ10, where

ṽ10 = P(N5ML3)f2;1 + ProjC10 (N8 + P(L3ML5) + L4ML4) f2;1,

and consequently

v∗10 = v10 +
(− 1

10a6b4A2,1x
10 + (−3a9 − 9

14b4b6 − 4
15b2

5)A2,1x
9y

)
∂y.

Reasoning analogously, we get U11 = UL
11+U

[2]
11 +O(3), and v∗11 = v11+ ṽ11+ ṽ

[2]
11

(ṽ[2]
k denotes the part of ṽk depending on the square ofA2,1), with

ṽ11 = P(N6ML3)f2;1 + ProjC11 (N9 + P(L3ML6) + P(L4ML5)) f2;1,

ṽ
[2]
11 =

1
2
ProjC11

(
Ñ9 + P(L3ML̃6)

)
f2;1.

After some computations, we get

v∗11 = v11 + ((− 1
5a7b4A2,1)x11 +

+((−3a10 − 11
21b5b6 − 99

140b4b7)A2,1 + 339
280a6b4A

2
2,1)x

10y)∂y.
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In summary, the transformed vector field up to order 11 is

v∗ = y∂x +
11∑

n=2

(a∗nxn + b∗nxn−1y)∂y, (48)

with a∗n = an for n = 2, . . . , 9, b∗n = bn for n = 2, . . . , 6, and

b∗7 = b7 − 3a6A2,1, b∗8 = b8 − (3a7 − 3
10b2

4)A2,1,

b∗9 = b9 + (−3a8 − 3
5b4b5)A2,1, a∗10 = a10 − 1

10a6b4A2,1,

b∗10 = b10 + (−3a9 − 9
14b4b6 − 4

15b2
5)A2,1, a∗11 = a11 − 1

5a7b4A2,1,

b∗11 = b11 + (−3a10 − 11
21b5b6 − 99

140b4b7)A2,1 + 339
280a6b4A

2
2,1.

Now, we consider a generator depending only on A2,0. As before, we obtain
another transformed vector field v∗∗, which agrees with v∗ up to order 9, and

v∗∗10 = v∗10 + ProjC10P(N5ML3)f2;0,

v∗∗11 = v∗11 + ProjC11 (P(N5ML4) + P(N6ML3)) f2;0,

where f2;0 = A2,0f2,0. The coefficients of v∗∗ satisfy a∗∗n = a∗n for n = 2, . . . , 11,
b∗∗n = b∗n for n = 2, . . . , 9, and

b∗∗10 = b∗10 − 10
7 a∗6b

∗
4A2,0,

b∗∗11 = b∗11 + (− 11
8 a∗7b

∗
4 − 11

7 a∗6b
∗
5)A2,0.

Finally, we consider a generator depending only on A3,1. The transformed vector
field v∗∗∗ agrees with v∗∗ up to order 10, and v∗∗∗11 = v∗∗11 + ProjC11P(N5ML3)f3;1,
where f3;1 = A3,1f3,1. So, its coefficients satisfy a∗∗∗n = a∗∗n for n = 2, . . . , 11,
b∗∗∗n = b∗∗n for n = 2, . . . , 10, and

b∗∗∗11 = b∗∗11 + 37
112a∗∗6 b∗∗4 A3,1.

Taking A2,1, A2,0, A3,1 adequately, we obtain the hypernormal form (47) up to
order 11.

In the remaining cases considered in this last section, one can proceed analo-
gously, but for the sake of brevity we only present the hypernormal form as well
as the expressions for the first coefficients.
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Example 2: Case I.2.
We will assume now that the second order normal form coefficients are nonzero

(a2, b2 6= 0).
We plain to apply Theorem 31. We have computed the constants ah,i

1 , ah,i
2 for

h = 2, . . . , 60, and they are nonzero. Then, the vector field (21) is C∞–conjugate,
up to order 93, to

y∂x +


a∗2x

2 + b∗2xy + a∗3x
3 +

30∑

j=1

(b∗3j+1x
3jy + b∗3j+2x

3j+1y)


 ∂y.

where the first coefficients are:

a∗2 = a2, b∗2 = b2, a∗3 = a3,

b∗4 = b4 −
(
b2
2b3 + 4a4b2 + 5a3b3

)
/ (5a2) ,

b∗5 = b5 −
(
10a2a4b3 + 81a3a4b2 + 9a3b

2
2b3 − 35a2a5b2

)
/

(
10a2

2

)
.

Also, we have computed the expressions for the coefficients up to order 14, but
they are not included here for the sake of brevity.
Example 3: Case II.

We will consider now that the coefficients of the vector field (4) satisfy a2 = 0,
a3 6= 0, b2 6= 0. In the present case, we can show that the constants that appear
in the hypothesis of Theorem 38 have an special structure (they are polynomials
in a3, b2):

(1) a2n,1
1 = b2(α1,nan

3 + α2,nan−1
3 b2

2 + · · ·+ αn,na3b
2n−2
2 ). The first ones are

a2,1
1 = 0,

a4,1
1 = b2( 19

21a2
3 + 2

7b2
2),

a6,1
1 = b2(− 237

220a3
3 − 13

220a2
3b

2
2 + 3

22a3b
4
2),

a8,1
1 = b2( 11317

12320a4
3 − 12517

22176a3
3b

2
2 − 5287

18480a2
3b

4
2 + 1

20a3b
6
2).

(2) a2n−1,0
1 = b2(α1,nan

3 + α2,nan−1
3 b2

2 + · · ·+ αn−1,na2
3b

2n−4
2 ).

(3) a2n−1,0
2 = α1,nan−1

3 b2
2 + α2,nan−1

3 b2
2 + · · ·+ αn−1,na3b

2(n−1)
2 .

In the three items above, we have proved that, for each n = 2, . . . , 10, there exists
j such that αj,n 6= 0. Consequently, we find that the inequalities a2n,1

1 6= 0,
a2n−1,0
2 6= 0, a2n−1,0

1 6= 0 are true generically for n = 2, . . . , 10, and each arbitrary
constant can be used to annihilate one normal form coefficient.

(4) a2n,0
1 = α1,nan+1

3 + α2,nan
3 b2

2 + · · ·+ αn,na2
3b

2n−2
2 .

(5) a2n+1,1
1 = α1,nan+1

3 + α2,nan−1
3 b2

2 + · · ·+ αn+1,na3b
2n
2 .
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(6) a2n,1
2 = α1,nan

3 + α2,nan−1
3 b2

2 + · · ·+ αn+1,nb2n
2 .

(7) a2n,0
2 = b2(α1,nan

3 + α2,nan−1
3 b2

2 + · · ·+ αn,nb2n−2
2 ).

(8) a2n+1,1
2 = b2(α1,nan

3 + α2,nan−1
3 b2

2 + · · ·+ αn+1,nb2n
2 ).

In the items (4)-(8), we have found that for each n = 1, . . . , 10, there exists j such
that αj,n 6= 0. Consequently, the inequalities a2n,0

1 6= 0, a2n+1,1
1 6= 0, a2n,1

2 6= 0,
a2n,0
2 , a2n+1,1

2 6= 0, hold generically for n = 1, . . . , 10.

To apply Theorem 38, we will assume that a2,1
2 6= 0; a2n,1

1 6= 0 and a2n−1,0
1 6= 0

for n = 2, . . . , 10; a2n,0
1 6= 0 and a2n+1,1

1 6= 0 for n = 1, . . . , 10. Then, we obtain
the following hypernormal form up to order 43:

v∗ = y∂x +


a∗3x

3 + a∗4x
4 + a∗5x

5 +
43∑

n=2,n 6=4

b∗nxn−1y


 ∂y.

Moreover,

b∗2 = b2, a∗3 = a3, b∗3 = b3, a∗4 = a4, a∗5 = a5,

b∗5 = b5 − (20a3b2b3b4 + 5a6b
3
2 + 45a3a6b2 −

−5a4b
2
2b4 + 63a3a4b4)/

(
9a2

3 + a3b
2
2

)
.

We remark that there is one possibility of Theorem 38 which can not be used,
because a2,1

1 = 0 (i. e., the normal form coefficient a∗5 can not be annihilated).
Instead, we have used the arbitrary constant A2,1 to annihilate b∗4.

Anyway, we can get different hypernormal forms by applying different items of
Theorem 38. For instance, assuming the generic conditions a2n,0

2 6= 0, a2n,1
2 6= 0

for n = 1, . . . , 10, and also a2n+1,0
2 6= 0, a2n+1,1

2 6= 0 for n = 1, . . . , 9, we obtain the
following hypernormal form up to order 41:

v∗ = y∂x +

(
b∗2xy + b∗3x

2y + +
41∑

n=3

a∗nxn

)
∂y.

This hypernormal form, up to order 12, is considered in Yuan & Yu [13].
Example 4: Case III.

Finally, we will consider a2 = a3 = a4 = 0, a5 6= 0, b2 6= 0. We have computed
the constants that appear in the hypothesis of Theorem 41. They satisfy: a3,1

1 = 0,
ah,1
1 6= 0 for h = 2, . . . , 20, h 6= 3 and ah,0

1 , ah,1
2 , ah,0

2 6= 0 for h = 2, . . . , 20. Hence,
a hypernormal form up to order 43 is:

v∗ = y∂x +

(
b∗2xy + b∗3x

2y + b∗5x
4y +

43∑
n=5

a∗nxn

)
∂y,



TAKENS–BOGDANOV NORMAL FORM 421

and the expressions for the first coefficients are:

b∗2 = b2, b∗3 = b3, a∗5 = a5,

b∗5 = b5 − 5b3b4/ (2b2) , a∗6 = a6,

a∗7 = a7 − 2a5b4/b2, a∗8 = a8 − (6a6b2b4 + a5b3b4) /
(
2b2

2

)
.

7. FURTHER SIMPLIFICATIONS BY REPARAMETRIZING TIME

In this last section, we will show the improvements that can be achieved if we
use C∞-equivalence.

Our goal is to show how the field (21) can be transformed into (22) by using not
only coordinate transformations, but also reparametrizing the time. The effect of
such reparametrization is to multiply the vector by a local nonzero function of the
state variables.

We will present without proofs two particular cases (corresponding to examples
2,3 in the previous section) to show the refinements that one can achieve.

Notice that we present several possibilities in each case for the simplified normal
form under C∞-equivalence. One of them agrees with the one obtained by Loray
[9], Strózyna & Zoladek [10].

Case I: a2 6= 0, b2 6= 0.

Theorem 46. Assume a2 6= 0, b2 6= 0. Then, (21) is C∞–equivalent to (22),
where

1.a∗3 = a∗5 = b∗5 = a∗6 = b∗6 = 0.
2.We can choose one of the following statements:

(2-a) b∗3 = a∗4 = 0,

(2-b) b∗3 = b∗4 = 0,

(2-c) b∗4 = a∗4 = 0.

3.For all n ≥ 3, we can obtain

(3-a) if An 6= 0, or Bn 6= 0, then a∗3n = b∗3n = 0,

(3-b) if An = Bn = 0, then a∗3n = 0 or b∗3n = 0.

4.For all n ≥ 2, we can obtain
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(4-a) if Cn 6= 0, then a∗3n+1 = b∗3n+1 = 0,

(4-b) if Cn = 0, then a∗3n+1 = 0 or b∗3n+1 = 0.

5.For all n ≥ 2, we can obtain

(5-a) if Dn 6= 0, then a∗3n+2 = b∗3n+2 = 0,

(5-b) if Dn = 0, then a∗3n+2 = 0 or b∗3n+2 = 0,

where

An = a2a
2n,1
2 ,

Bn = (3n + 1)a2a
2n−1,0
2 − 3nb2a

2n−1,0
1 ,

Cn = (3n + 2)a2a
2n,0
2 − (3n + 1)b2a

2n,0
1 ,

Dn = (3n + 3)a2a
2n+1,1
2 − (3n + 2)b2a

2n+1,1
1 ,

and the constants ah,i
j agree with those computed in Section 5 (recall that they

only depend on a2, b2).

Remark: Using the symbolic program MapleV, we have checked that An 6= 0,
for 3 ≤ n ≤ 30; Cn = 0, for 2 ≤ n ≤ 30; and Dn 6= 0, for 2 ≤ n ≤ 30. Then, a
93th-order hypernormal form using C∞–equivalence,assuming a2, b2 6= 0, is given
by

ẋ = y,

ẏ = a∗2x
2 + b∗2xy + b∗3x

2y +
30∑

j=2

b∗3j+1x
3jy.

There are different possibilities, for instance

ẋ = y,

ẏ = a∗2x
2 + b∗2xy +

30∑

j=1

b∗3j+1x
3jy.

Moreover, our approach allows us to provide the expressions for the hypernormal
form coefficients. For instance, in this last system, they are given by:

a∗2 = a2,

b∗2 = b2,

b∗4 =
(−40a2a3b3 − 32a2a4b2 + 35a3

2b2 − 8a2b2
2b3 + 6a3b2

3 + 40a2
2b4

)
/40a2

2.
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Case II: a2 = 0, a3 6= 0, b2 6= 0.

Theorem 47. Assume a2 = 0, a3 6= 0, b2 6= 0. Then, (21) is C∞–equivalent
to (22), where

1.a∗2 = 0, b∗2 = b2, a∗3 = a3,
2.b∗3 = 0 or a∗4 = 0,
3.for n ≥ 1, we can get:

(3-a) if An 6= 0, then b∗4n = a∗4n+1 = 0,
(3-b) if An = 0, then b∗4n = 0 or a∗4n+1 = 0,

4.for n ≥ 1, we can get:

(4-a) if Bn 6= 0, then b∗4n+1 = a∗4n+2 = 0,
(4-b) if Bn = 0, then b∗4n+1 = 0 or a∗4n+2 = 0,

5.for n ≥ 1, we can get:

(5-a) if Cn 6= 0, then b∗4n+2 = a∗4n+3 = 0,
(5-b) if Cn = 0, then b∗4n+2 = 0 or a∗4n+3 = 0,

6.for n ≥ 1, we can get:

(6-a) if Dn 6= 0, then b∗4n+3 = a∗4n+4 = 0,
(6-b) if Dn = 0, then b∗4n+3 = 0 or a∗4n+4 = 0.

Here,

An = (4n + 2)a3a
2n,1
2 − 4nb2a

2n,1
1 ,

Bn = (4n + 3)a3a
2n,0
2 − (4n + 1)b2a

2n,0
1 ,

Cn = (4n + 4)a3a
2n+1,1
2 − (4n + 2)b2a

2n+1,1
1 ,

Dn = (4n + 5)a3a
2n+1,0
2 − (4n + 3)b2a

2n+1,0
1 ,

where the constants ah,i
j , h ≥ 2, i = 0, 1, j = 1, 2 are those defined in Theorem 38.

Remark: In generic conditions for a3, b2, we have checked that An 6= 0, Cn 6= 0,
Bn = Dn = 0, for 1 ≤ n ≤ 30. Then, a 123th-order hypernormal form using
C∞–equivalence is

ẋ = y,

ẏ = b∗2xy + a∗3x
3 +

61∑

j=1

b∗2j+1x
2jy.
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APPENDIX

A.1. PROOFS OF CASE I: R < 2S − 1.

We will focus here mainly on the case I.1: s < r < 2s− 1. In fact, the case I.2
is almost identical.

Recall that, as the first nonzero normal form coefficients are ar, bs, we have
N1 = · · · = Nr−2 = 0, Nr−1 6= 0 and L1 = · · · = Ls−2 = 0, Ls−1 6= 0.

(A) Role of A2n,1 ∈ R, n ≥ 1.

We start analyzing how the arbitrary constant A2n,1, n ≥ 1, appears in v∗.
We will transform (21) using a generator U =

∑
k≥1 Uk, which depends only on

A2n,1 ∈ R. As we will see below, this generator is given, degree by degree, as:

• U1 = · · · = U2n−1 = 0.
• U2n = A2n,1f2n,1.
• Uk is given in (16), taking Ah,i = 0 for h 6= 2n, i 6= 1, for k = 2n+1, . . . , 2n+

n(r + 1)− 2.
• Uk depends nonlinearly on A2n,1 for k ≥ 2n + n(r + 1)− 1.

As N1 = · · · = Nr−2 = 0, L1 = · · · = Ls−2 = 0, in the sum defining Uk, the
nonzero summands are those corresponding to nj ≥ s − 1. Also, n′j = nj + 1
whenever s − 1 ≤ nj ≤ r − 2. Then, applying Theorem 13, we obtain ṽk =
ProjCk

[v, U ] = 0 for k = 2, . . . , n(r+1)−1. So, in this case, taking λ = n(r+1)−1,
we have J λ[v, U ] = 0.

From the structure of U , it is easily obtained that ProjRk
[v, U ] = 0 for k =

λ+1, . . . , λ+2n− 1. Then, taking δ = λ+2n = 2n+n(r +1)− 1, we obtain that
ṽk = ProjCk

[v, U ] = [v, U ]k is given in (20) for k = λ + 1, . . . , δ − 1. In particular,

ṽλ+1 = A2n,1ProjCλ+1
Nr−1MNr−1

n−1· · · MNr−1f2n,1 ∈ Hλ+1;0. (A.1)

Moreover, we obtain from (20) that Π1ṽλ+1 = · · · = Π1ṽλ+s−1 = 0. Also,

ṽλ+s = A2n,1P(Ls−1MNr−1
n· · · MNr−1f2n,1) ∈ H∗λ+s;−1

⋂
Cλ+s. (A.2)

Notice that A2n,1 appears linearly in the generator and in the transformed vector
field, up to order δ − 1. So, UNL

k = 0 for k = 1, . . . , δ − 1.
In the δ-order terms of the generator, A2n,1 can appear nonlinearly: Uδ =

UL
δ + UNL

δ , where

[v1, U
L
δ ] = −ProjRδ

(
[v2, U

L
δ−1] + · · ·+ [vδ−1, U

L
2 ]

)
=
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= −ProjRδ

δ∑
m=s

(Nm−1U
L
δ−m+1 + Lm−1U

L
δ−m+1),

[v1, U
NL
δ ] = −ProjRδ


∑

j≥2

1
j!

T j
U (v)


 = −ProjRδ

1
2 [[v, U ], U ] =

= − 1
2ProjRδ

[ṽλ+1, U2n].

Consequently

UL
δ = M

δ∑
m=s

(Nm−1U
L
δ−m+1 + Lm−1U

L
δ−m+1) ∈ H∗δ;−1,

UNL
δ =

1
2
A2n,1M(L̃λf2n,1 + Ñλf2n,1),

where L̃λ, Ñλ correspond to the vector field ṽλ+1, defined in (A.1). As they depend
linearly on A2n,1, we find that UNL

δ depends quadratically on A2n,1. Moreover,
Ñλ = 0 because Π1ṽλ+1 = 0.

In summary,

UNL
δ =

1
2
A2n,1ML̃λf2n,1 ∈ Hδ;2n−2. (A.3)

For k > δ, we can write Uk = UL
k + UNL

k , where UL
k , UNL

k are obtained from
(8), (9), respectively. In this way, UL

k are given in Theorem 12 (taking Ah,i = 0
for h 6= 2n, i 6= 1). Hence UL

k ∈ H∗k;−1 for k > δ, because H∗k;j = H∗k;−1 for j < 0.
Next lemma summarizes all the concerning with the linear appearance of the

arbitrary constant in both, the generator and the transformed vector field.

Lemma 48. Let us consider the generator U =
∑

k≥1 Uk given before. Denote
λ = n(r + 1)− 1, δ = 2n + n(r + 1)− 1, µ = (2n− 1)(r + 1) + s− 1. Then:

(a) UL
k = 0, for k = 1, . . . , 2n− 1.

Consider q ≥ 0, and let α, β ∈ N0 such that q = α(r − 1) + β(s − 1) + γ, 0 ≤
β(s− 1) + γ < r − 1, 0 ≤ γ < s− 1. Then UL

2n+q ∈ H∗2n+q;2n−1−2α−β.
(b) UNL

k = 0, for k = 1, . . . , δ − 1.

Consider q ≥ 0, and let α, β ∈ N0 as in item (a).

Then UNL
δ+q ∈ H∗δ+q;2n−2−2α−β.

(c) ProjCk

{
[v2, U

NL
k−1] + · · ·+ [vk−1, U

NL
2 ] +

∑
j≥2

1
j!T

j
U (v)

}
= 0, for k = 2, . . . , µ.



426 A. ALGABA ET AL.

Proof. For each q ≥ 0, α is the quotient of the division
q

r − 1
. Then, we can

apply at the most α times the operator Nr−1 to f2n,1 in order to get terms of
order 2n + q (in other words, applying Nr−1 more than α times, we will get terms
of order greater than 2n + q). If we denote α̃ to the rest of the above division, we
find q = α(r − 1) + α̃. Note that 0 ≤ α̃ < r − 1.

Analogously, β, γ are, respectively, the quotient and rest of the division
α̃

s− 1
.

So, β denotes how many times we must apply Ls−1. Moreover, 0 ≤ γ < s− 1 and
q = α(r − 1) + α̃ = α(r − 1) + β(s− 1) + γ. As we are assuming r − 1 < 2(s− 1)
and then β = 0 or β = 1.
(a) Applying Theorem 12, we get UL

2n = A2n,1f2n,1. Also, we find UL
2n+q ∈

H2n+q;2n+q−1−|n′| for q ≥ 1, because f2n,n;1,n′ ∈ H2n+|n|;2n+|n|−1−|n′|, f̃2n,n;1,n′ ∈
H2n+|n|;2n+|n|−|n′|, and

UL
2n+q = A2n,1




∑

l>0,n∈Il,n
′∼n

|n|=q,|n′|<2n+q

f2n,n;1,n′+

+
∑

l>0,n∈Il,n
′∼n

|n|=q,|n′|=2n+q

M(2n + q) ◦ ProjR2n+q
f̃2n,n;1,n′


 .

As we must take |n| = q = α(r − 1) + β(s− 1) + γ, we get |n| − |n′| ≥ −2α− β,
because nj ≥ s − 1 and n′j = nj + 1 whenever s − 1 ≤ nj ≤ r − 2. Then,
UL

2n+q ∈ H∗2n+q;2n−1−2α−β .

(b) We will use induction.
• The result for q = 0 follows from (A.3).
• Assume that the result is also true for each q̃ < q. As dif(Uk) = dif(UL

k ), we get
dif(UL

k ) ≤ dif(UNL
k ) for k ≥ 1. Hence dif(TU (v)) = dif(TUL(v)). Moreover,

[v1, U
NL
δ+q] = −ProjRδ+q



[v2, U

NL
δ+q−1] + · · ·+ [vδ+q−1, U

NL
2 ] +

∑

j≥2

1
j!

T j
U (v)



 .

Take κ = δ + q. Then:

dif(UNL
κ ) ≥ dif


[v2, U

NL
κ−1] + · · ·+ [vκ−1, U

NL
2 ] + Jκ





∑

j≥2

1
j!

T j
U (v)






− 1 ≥
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≥ min



dif

(
[v2, U

NL
κ−1] + · · ·+ [vκ−1, U

NL
2 ]

)
; dif


Jκ


∑

j≥2

1
j!

T j
U (v)









− 1.

(A.4)

On the one hand,

dif
(
[v2, U

NL
κ−1] + · · ·+ [vκ−1, U

NL
2 ]

)
= minj=s,...,q+1dif([vj , U

NL
κ−j+1]) =

min
{
dif([vs, U

NL
κ−s+1]); dif([vr, U

NL
κ−r+1])

}
.

In the last equality, we have used the following properties (see Lemmas 17, 19):
dif([v, U ]) ≥ dif(v) + dif(U); dif(vs) = 0; dif(vk) ≥ 0 for k = s + 1, . . . , r − 1;
dif(vr) = −1; dif(vk) ≥ −1 for k > r; and dif(UL

k ) ≤ dif(UL
j ) for k ≥ j.

From the hypothesis of induction, we find:

dif(UNL
κ−s+1) = dif(UNL

δ+q−s+1) ≥ 2n− 2α− β − 1,

dif(UNL
κ−r+1) = dif(UNL

δ+q−r+1) ≥ 2n− 2α− β.

So, dif([vs, U
NL
κ−s+1]) ≥ 2n− 2α− β − 1, and then

dif
(
[v2, U

NL
κ−1] + · · ·+ [vκ−1, U

NL
2 ]]

) ≥ 2n− 2α− β − 1.

On the other hand, as dif(Uk) ≤ dif(Uj) for k ≥ j, and dif(JκTn
U (v)) ≥

dif(JκT 2
U (v)) for n ≥ 2, we get

dif


Jκ

∑

j≥2

1
j!

T j
U (v)


 = dif


Jκ

∑

j≥2

1
j!

T j
UL(v)


 = dif

(
[[v, UL], UL]κ

)
.

Also, we have [v, UL] = ṽλ+1 + · · · + ṽλ+s + · · ·, where dif(ṽk) ≥ 0 for k =
λ + 1, . . . , λ + s− 1, and dif(ṽk) ≥ −1 for k ≥ λ + s. Then,

dif(JκT 2
UL(v)) = min

{
dif([ṽλ+1, U

L]κ); dif([ṽλ+s, U
L]κ)

}
=

= min
{
dif([ṽλ+1, U

L
κ−λ]); dif([ṽλ+s, U

L
κ−λ−s+1])

}
.

From item (a), we obtain dif(UL
κ−λ) = dif(UL

2n+q) ≥ 2n − 1 − 2α − β. Then,
dif([ṽλ+1, U

L
κ−λ]) ≥ 2n−1−2α−β. Moreover, as dif(UL

κ−λ−s+1) > 2n−1−2α−β,
we get dif([ṽλ+s, U

L
κ−λ−s+1]) > 2n−2−2α−β and consequently, dif(JκT 2

UL(v)) ≥
2n− 1− 2α− β.

From (A.4), we get dif(UNL
δ+q) ≥ 2n−2−2α−β, and then Uδ+q ∈ H∗δ+q;2n−2−2α−β .
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(c) It is enough to observe that

1 ≤ dif


[v2, U

NL
µ−1] + · · ·+ [vµ−1, U

NL
2 ] + Jµ





∑

j≥2

1
j!

T j
U (v)






 ≤

≤ dif


[v2, U

NL
k−1] + · · ·+ [vk−1, U

NL
2 ] + Jk





∑

j≥2

1
j!

T j
U (v)






 ,

for k = 2, . . . , µ (in the second inequality, we have used item (b)).

Item (c) of the above lemma shows that the constant A2n,1 ∈ R appears linearly
in the transformed vector field v∗ up to order µ. This transformed vector field can
be expressed as

v∗ = v1 + vs + · · ·+ vλ + (vλ+1 + ṽλ+1) + · · ·+ (vµ + ṽµ) +
∑

k≥µ+1

v∗k,(A.5)

where vk, ṽk ∈ Ck. From this expression, we get

Lemma 49. Let λ = n(r + 1)− 1, µ = (2n− 1)(r + 1) + s− 1. Then, the vector
field (21) is C∞–conjugate to (22), where

a∗k = ak, for k = 2, . . . , λ + s− 1,

b∗k = bk, for k = 2, . . . , λ,

a∗k = ak + φ2n,1
k (A2n,1), for k = λ + s, . . . , µ

b∗k = bk + ψ2n,1
k (A2n,1), for k = λ + 1, . . . , µ,

where φ2n,1
k (A2n,1) = Π1ṽk, ψ2n,1

k (A2n,1) = Π2ṽk.

There are several possibilities of which normal form coefficient can be annihilated
by selecting adequately A2n,1 (note that functions φ2n,1

k , ψ2n,1
k are linear).

Among these, we will use it to annihilate the normal form coefficients a∗λ+s, b∗λ+1,
where A2n,1 appears for the first time. From (A.1), (A.2), we get the Lemma 22

(B) Role of A2n,0 ∈ R, n ≥ 1.

In this case, we will perform a transformation on the normal form (21), using
a generator U =

∑
k≥1 Uk, which depends only on A2n,0 ∈ R. This generator is

given, degree by degree, as:

• U1 = · · · = U2n−1 = 0.
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• U2n = A2n,0f2n,0.
• For k = 2n + 1, . . . , 2n + n(r + 1) + s − 3, we take Uk as in (16), but with

Ah,i = 0, for each h 6= 2n, i 6= 0.
• Uk depends nonlinearly on A2n,0 for k ≥ 2n + n(r + 1) + s− 2.

In the sum defining Uk, we must take nj ≥ s−1, and also n′j = nj +1 whenever
s−1 ≤ nj ≤ r−2. Also ṽk = ProjCk

[v, U ] = 0, for k = 2, . . . , n(r+1)+s−2. So, we
deduce that the vector field remains unalterated up to order n(r+1)+s−2. Using
the nomenclature of the end of Section 2, we have λ = n(r + 1) + s − 2. On the
other hand, ProjRk

[v, U ] = 0 for k = λ+1, . . . , λ+2n−1. Then, ṽk = ProjCk
[v, U ]

is given in (20) for k = λ + 1, . . . , λ + 2n− 1. From (20) we also get

ṽλ+1 = A2n,0ProjCλ+1
P(Ls−1MNr−1

n· · · MNr−1f2n,0). (A.6)

Moreover, Π1ṽλ+1 = · · · = Π1ṽλ+r−s = 0, and

ṽλ+r−s+1 = A2n,0Nr−1MNr−1
n· · · MNr−1f2n,0. (A.7)

Notice that UNL
k = 0 for k = 1, . . . , λ + 2n − 1. So, up to this order, A2n,0

appears linearly. This arbitrary constant can appear nonlinearly in the terms of
order δ = 2n + λ = 2n + n(r + 1) + s− 2 in the generator. The δ-order terms are
Uδ = UL

δ + UNL
δ , where

[v1, U
L
δ ] = −ProjRδ

(
[v2, U

L
δ−1] + · · ·+ [vδ−1, U

L
2 ]

)
,

[v1, U
NL
δ ] = −1

2
ProjRδ

[ṽλ+1, U2n],

that is, UL
δ is given in (16), and UNL

δ = 1
2A2n,0ML̃λf2n,0 ∈ Hδ;2n−1 (which

depends quadratically on A2n,0).
The proof of next lemma is analogous to the one of Lemma 48.

Lemma 50. Consider the generator U =
∑

k≥1 Uk given before. Denote λ =
n(r + 1) + s− 2, δ = 2n + n(r + 1) + s− 2, µ = 2n(r + 1) + s− 3. Then:

(a) UL
k = 0, for k = 1, . . . , 2n− 1.

Consider q ≥ 0 and let α, β ∈ N0 determined by the relations q = α(r− 1) + β(s−
1)+γ, 0 ≤ β(s−1)+γ < r−1, and 0 ≤ γ < s−1. Then UL

2n+q ∈ H∗2n+q;2n−2α−β.
(b) UNL

k = 0, for k = 1, . . . , δ − 1.

UNL
δ+j ∈ H∗δ+j;2n−1, for j = 0, . . . , r − s− 1.

Consider q ≥ 0 and let α, β ∈ N0 as indicated in item (a). Then UNL
δ+r−s+q ∈

H∗δ+r−s+q;2n−2−2α−β.
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(c) ProjCk

{
[v2, U

NL
k−1] + · · ·+ [vk−1, U

NL
2 ] +

∑
j≥2

1
j!T

j
U (v)

}
= 0, for k = 2, . . . , µ.

The above lemma assures that A2n,0 appears linearly in the transformed vector
field v∗ up to order µ. In fact, this transformed vector field can be expressed as
in (A.5), but now the values of λ, µ are different. In this case, we conclude:

Lemma 51. Let λ = n(r + 1) + s− 2, µ = 2n(r + 1) + s− 3. Then, the vector
field (21) is C∞–conjugate to (22), with

a∗k = ak, for k = 2, . . . , λ + r − s,

b∗k = bk, for k = 2, . . . , λ,

a∗k = ak + φ2n,0
k (A2n,0), for k = λ + r − s + 1, . . . , µ,

b∗k = bk + ψ2n,0
k (A2n,0), for k = λ + 1, . . . , µ,

where φ2n,0
k (A2n,0) = Π1ṽk, ψ2n,0

k (A2n,0) = Π2ṽk.

Using (A.6), (A.7), we are able to determine how A2n,0 appears for the first time
in the expressions of the normal form coefficients. This is just the case presented
in Lemma 23.

(C) Role of A2n+1,1 ∈ R, n ≥ 1.

Following the same procedure of items (A), (B), we consider a generator U =∑
k≥1 Uk such that

• U1 = · · · = U2n = 0.
• U2n+1 = A2n+1,1f2n+1,1.
• For k = 2n + 2, . . . , 2n + n(r + 1) + s − 1, we take Uk as in (16), but with

Ah,i = 0, for each h 6= 2n + 1, i 6= 1.
• Uk depends nonlinearly on A2n+1,1 for k ≥ 2n + n(r + 1) + s.

Reasoning as above, we take λ = n(r+1)+s−1, δ = λ+2n+1 = 2n+n(r+1)+s.
One can prove that the vector field does not change up to order λ. Moreover,
ProjRk

[v, U ] = 0, and then ṽk = ProjCk
[v, U ], for k = λ + 1, . . . , λ + 2n. From

their expressions (which are given in (20), taking Ah,i = 0 for h 6= 2n + 1, i 6= 1),
we obtain

ṽλ+1 = A2n+1,1ProjCλ+1
P(Ls−1MNr−1

n· · · MNr−1f2n+1,1), (A.8)

ṽλ+r−s+1 = A2n+1,1Nr−1MNr−1
n· · · MNr−1f2n+1,1. (A.9)

We remark that Π1ṽλ+1 = · · · = Π1ṽλ+r−s = 0.
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As in previous items, we get UNL
k = 0 for k = 1, . . . , δ − 1. Moreover, the

following lemma holds:

Lemma 52. Let U =
∑

k≥1 Uk the generator defined before. Denote λ = n(r +
1) + s− 1, δ = 2n + n(r + 1) + s, µ = 2n(r + 1) + s− 1. Then:

(a) UL
k = 0, for k = 1, . . . , 2n.

Consider q ≥ 0, and let α, β ∈ N0 such that q = α(r − 1) + β(s − 1) + γ, 0 ≤
β(s− 1) + γ < r − 1, 0 ≤ γ < s− 1. Then UL

2n+1+q ∈ H∗2n+1+q;2n−2α−β.
(b) UNL

k = 0, for k = 1, . . . , δ − 1.

UNL
δ+j ∈ H∗δ+j;2n−1, for all j = 0, . . . , r − s− 1.

Consider q ≥ 0, and let α, β ∈ N0 as indicated in item (a). Then UNL
δ+r−s+q ∈

H∗δ+r−s+q;2n−2−2α−β.
(c)

ProjCk

{
[v2, U

NL
k−1] + · · ·+ [vk−1, U

NL
2 ] +

∑
j≥2

1
j!T

j
U (v)

}
= 0, for k = 2, . . . , µ.

We have obtained that, using a generator which depends only on A2n+1,1, the
transformed vector field v∗ is expressed as in (A.5), with the values of λ, µ that
appear in the statement of the above lemma. Moreover:

Lemma 53. Let λ = n(r + 1) + s− 1, µ = 2n(r + 1) + s− 1. Then, the vector
field (21) is C∞–conjugate to (22), where

a∗k = ak, for k = 2, . . . , λ + r − s,

b∗k = bk, for k = 2, . . . , λ,

a∗k = ak + φ2n+1,1
k (A2n+1,1), for k = λ + 1 + r − s, . . . , µ,

b∗k = bk + ψ2n+1,1
k (A2n+1,1), for k = λ + 1, . . . , µ,

where φ2n+1,1
k (A2n+1,1) = Π1ṽk, ψ2n+1,1

k (A2n+1,1) = Π2ṽk.

In particular, using (A.8), (A.9), we determine how the arbitrary constant can
appear for the first time in the normal form coefficients, that corresponds to the
situation of Lemma 24.

(D) Role of A2n−1,0 ∈ R, n ≥ 2.

Here, we consider the generator U =
∑

k≥1 Uk, with

• U1 = · · · = U2n−2 = 0.
• U2n−1 = A2n−1,0f2n−1,0.
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• For k = 2n, . . . , 2n + (n− 1)(r + 1) + 2s− 4, we take Uk as in (16), but with
Ah,i = 0, for each h 6= 2n− 1, i 6= 0.
• Uk depends nonlinearly on A2n−1,0 for k ≥ 2n + (n− 1)(r + 1) + 2s− 3.

In this last case, we take λ = (n − 1)(r + 1) + 2s − 2, δ = λ + 2n − 1 =
2n + (n− 1)(r + 1) + 2s− 3.

From Lemma 6, we have ProjC2l−1+|n|Nnl
MNnl−1 · · ·MNn1f2l−1,0 = 0, for n ∈

Il, and we can deduce easily that J λ[v, U ] = 0. Also, ProjRk
[v, U ] = 0, and

consequently ṽk = ProjCk
[v, U ] for k = λ + 1, . . . , δ− 1. The last ones are given in

(20), taking Ah,i = 0 for h 6= 2n− 1, i 6= 0. From these expressions, we get:

ṽλ+1 = A2n−1,0ProjCλ+1
P(Ls−1MLs−1MNr−1

n−1· · · MNr−1f2n−1,0). (A.10)

Moreover, Π1ṽλ+1 = · · · = Π1ṽλ+r−s = 0, and

ṽλ+r−s+1 = A2n−1,0P(Ls−1MNr−1
n· · · MNr−1f2n−1,0). (A.11)

Also, UNL
k = 0 for k = 1, . . . , δ − 1. In this case, we have:

Lemma 54. Let U =
∑

k≥1 Uk the generator defined before. Denote λ = (n −
1)(r +1)+2s− 2, δ = 2n+(n− 1)(r +1)+2s− 3, µ = 2(n− 1)(r +1)+ r + s− 2.
Then:

(a) UL
k = 0, for k = 1, . . . , 2n− 2.

Consider q ≥ 0, and let α, β ∈ N0 such that q = α(r − 1) + β(s − 1) + γ, 0 ≤
β(s− 1) + γ < r − 1, 0 ≤ γ < s− 1. Then UL

2n−1+q ∈ H∗2n−1+q;2n−1−2α−β.
(b) UNL

k = 0, for k = 1, . . . , δ − 1.

Uδ+j ∈ H∗δ+j;2n−2, for j = 0, . . . , r − s− 1.

Consider q ≥ 0, and let α, β ∈ N0 as indicated in item (a). Then Uδ+r−s+q ∈
H∗δ+r−s+q;2n−3−2α−β.

(c) ProjCk

{
[v2, U

NL
k−1] + · · ·+ [vk−1, U

NL
2 ] +

∑
j≥2

1
j!T

j
U (v)

}
= 0, for k = 2, . . . , µ.

The transformed vector field is given in (A.5) with the values of λ, µ that appear
in the statement of the lemma. In the present case, we find:

Lemma 55. Let λ = (n−1)(r +1)+2s−2, µ = 2(n−1)(r +1)+2s+ r− s−2.
Then, the vector field (21) is C∞–conjugate to (22), with

a∗k = ak, for k = 2, . . . , λ + r − s,

b∗k = bk, for k = 2, . . . , λ,

a∗k = ak + φ2n−1,0
k (A2n−1,0), for k = λ + r − s + 1, . . . , µ,

b∗k = bk + ψ2n−1,0
k (A2n−1,0), for k = λ + 1, . . . , µ,
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where φ2n−1,0
k (A2n−1,0) = Π1ṽk, ψ2n−1,0

k (A2n−1,0) = Π2ṽk.

As a particular case, from (A.10), (A.11), we obtain Lemma 25.

The proofs of Lemmas 27, 28, 29 of the case I.2 are analogous to the ones of
Lemmas 22, 23, 24 of the case I.1. Only, the proof of Lemma 30 is slightly different
to those of the Lemma 25 in the above subcase, because we must now use Lemma
6. We do not include them for the sake of brevity.

A.2. PROOFS OF CASE II: R = 2S − 1.

In the situation we analyze now, the first nonzero normal form coefficients
are a2s−1, bs. In this case, we must pay attention to operators MN2s−2 and
MLs−1MLs−1, because both decrease the difference in 2 unities and increase the
order in 2s− 2 unities.

Notice that we must use indices n and n′ ∼ n with nj ≥ s− 1; and n′j = nj + 1
whenever s− 1 ≤ nj ≤ 2s− 3.

Next, we present the Proof of Lemma 34.

Proof. Consider a generator U =
∑

k≥1 Uk such that

• U1 = · · · = U2n−1 = 0,
• U2n = A2n,1f2n,1.
• For k > 2n, we take Uk = UL

k + UNL
k , where UL

k , UNL
k satisfy (8), (9).

Moreover, we take these functions depending only on A2n,1.

It can be proved that ProjCk

{
[v2, U

NL
k−1] + · · ·+ [vk−1, U

NL
2 ] +

∑
j≥2

1
j!T

j
U (v)

}
=

0, for k = 2, . . . , 4ns − s − 1. Moreover, UL
k and ṽk = ProjCk

[v, U ] (with k ≤
4ns− s− 1) are given in (16) and (20), taking Ah,i = 0 for h 6= 2n, i 6= 1.

Consequently, ṽ2 = · · · = ṽ2ns−1 = 0 and Π1ṽk = 0 for k = 2ns, . . . , 2ns + s− 2.
Also,

ṽ2ns+s−1 = A2n,1

∑

n∈Il,n
′∼n

nj=s−1,n′j=s;nj=2s−2;n′j=2s

2n+|n|=2ns+s−1,1+|n′|=2ns+s+1

f̃2n,n;1,n′ ,

ṽ2ns = A2n,1

∑

n∈Il,n
′∼n

nj=s−1,n′j=s;nj=2s−2;n′j=2s

2n+|n|=2ns,1+|n′|=2ns+1

ProjC2ns
f̃2n,n;1,n′ .

To finish the proof, it is sufficient to take a2n,1
1 = 1

A2n,1
Π1ṽ2ns+s−1, a2n,1

2 =
1

A2n,1
Π2ṽ2ns.
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Lemmas 35, 36, 37 can be proved in a similar way.

A.3. PROOFS OF CASE III: R > 2S − 1.

The last case corresponds to the situation when the first nonzero normal form
coefficients are ar, bs, with r > 2s − 1. Now, we will focus into the use of
MLs−1MLs−1 instead MNr−1.

Moreover, we must use indices n and n′ ∼ n with nj ≥ s− 1, and n′j = nj + 1
whenever s− 1 ≤ nj ≤ r − 2.

Next, we show the proof of Lemma 39.

Proof. Take a generator U =
∑

k≥1 Uk such that

• U1 = · · · = Uh−1 = 0,
• Uh = Ah,0fh,0 ∈ Hh;h.
• For k > h, we take Uk = UL

k + UNL
k , where UL

k y UNL
k satisfy (8), (9), and

they only depend on Ah,0.

As in the above cases, we can show that ṽk = ProjCk
[v, U ] (k = 2, . . . , 2hs+r−s−2)

are given in (20), taking Ah̃,i = 0 for h̃ 6= h, i 6= 0. Moreover, applying Lemmas 8,
10, we get ṽ2 = · · · = ṽhs+r−s−1 = 0, and Π1ṽk = 0, for k < hs + 2r − 2s. Also,
the expressions for the constants are just those appearing in the statement of the
lemma. Moreover, we can prove that Ah,0 appears nonlinearly in the normal form
coefficients of order 2hs + 2r − 3s + 1 and upper.

The proof of Lemma 40 is analogous to those of Lemma 39. The only difference
is that we must use now the Lemma 11.
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