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The topic

• Ultimate goal: Understand polynomial planar vector fields which admit an
elementary first integral.

• Foundation and starting point: Prelle and Singer.

• Examples: Vector fields which admit a Darboux first integral.

• Lesser goal of this talk: Elementary vs. Darboux.
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Notation and notions (Part I)

Given: A complex polynomial vector field

X = P
∂

∂x
+ Q

∂

∂y

with associated ordinary differential equation

ẋ = P(x , y)
ẏ = Q(x , y)

• A (non-constant) local analytic function H : U −→ C is called a first integral of
X on U if and only if X (H) = 0.

• A local analytic function µ : U −→ C is called an integrating factor of field X
on U if and only if X (µ) = −(Px + Qy)µ; in other words div(µ · X ) = 0.
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Notation and notions (Part II)

Elementary extensions of C(x , y):
Adjoin successively (in any order) algebraic functions, exponentials and logarithms.
Local realization: Analytic functions on a subset of the complex plane.

Darboux functions:
F = exp(R) ·

∏
S ci
i

with rational functions R and Si and complex constants ci .

Note: Existence of Darboux first integral F is equivalent to existence of the first
integral

log(F ) = R +
∑

ci log(Si).
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Prelle and Singer (Part I)

Theorem.

(a) If the polynomial vector field X admits an elementary first integral then there
exist an integer m ≥ 0, algebraic functions v , u1, . . . , um over K and nonzero
constants c1, . . . , cm ∈ C such that

X (v) +
m∑
i=1

ci
X (ui)

ui
= X

(
v +

m∑
i=1

ci log(ui)

)
= 0,

but

v +
m∑
i=1

ci log(ui) 6= const.

The ci may be chosen linearly independent over the rational numbers Q.
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Prelle and Singer (Part II)

Theorem (cont.)

(b) If the vector field X admits an elementary first integral then it admits an
integrating factor of the special form

µ = f −d11 · · · f −drr ,

with irreducible and pairwise relatively prime polynomials f1, . . . , fr , and
exponents d1, . . . , dr ∈ Q.
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Prescribed integrating factors (Part I)

Motivated by Prelle and Singer, statement (b):
Given irreducible, pairwise relatively prime polynomials fi and nonzero di ∈ Q, try
to determine all polynomial vector fields which admit the integrating factor

µ = f −d11 · · · f −drr .

(Christopher, Llibre, Pantazi, W. 2006-2011.)

Starting point: If a vector field X admits such an integrating factor then every
algebraic curve

Ci = {(x , y); fi(x , y) = 0}
is invariant.
For given C1, . . . ,Cr , determining all polynomial vector fields with these invariant
curves can be done via standard (algorithmic) algebra.
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Prescribed integrating factors (Part II)

Try to determine all polynomial vector fields admitting integrating factor

µ = f −d11 · · · f −drr .

Simple answer in case of nondegenerate geometry:

Theorem. Assume that all the curves Ci are nonsingular, all pairwise intersections
and all intersections with the line at infinity are transversal, and there are no
multiple intersections ( including the line at infinity). Then:

(a) All vector fields admiting the integrating factor µ are known explicitly.

(b) They all admit a Darboux first integral.

(c) If one of the exponents di is not a positive integer then all vector fields admit a
rational first integral.
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Prescribed integrating factors (Part III)

Some theory: The vector fields with non-constant Darboux integrating factor

µ = f −d11 · · · f −drr .

form a linear space F . The so-called trivial vector fields admitting this integrating
factor form a subspace F0 ⊆ F . To construct a trivial vector field, start with an
arbitrary polynomial g , define

Zg = Hamiltonian vector field of g/
(
f d1−11 · · · f dr−1r

)
.

Then the vector field

f d11 · · · f drr · Zg = f · Xg −
r∑

i=1

(di − 1)g
f

fi
· Xfi

(with Xh = (−hy , hx) the Hamiltonian vector field of a function h) is polynomial
and admits the integrating factor µ.
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Prescribed integrating factors (Part IV)

Prescribed integrating factor

µ = f −d11 · · · f −drr

with rational di .

Theorem. The quotient space F/F0 is finite dimensional.

Remarks.

• In many instances one has F = F0, or F/F0 is known explicitly.

• Elements of F0 admit a rational first integral.
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Prescribed Darboux first integrals

Back to today’s problem, viz. elementary vs. Darboux first integrals.

Theorem. (Chavarriga, Giacomini, Giné, Llibre 2003.)
Let

H(x , y) = f λ11 · · · f λrr exp(g/(f n11 · · · f nrr ))

be a Darboux function with λ1, · · · , λr ∈ C, n1, · · · , nr ∈ N0 and g ∈ C[x , y ]
coprime with fi whenever ni 6= 0. Then H is a first integral of the polynomial vector
field

X̂ =
r∏

k=1

f nk+1
k ·

(
r∑

k=1

λkXfk/fk + Z (n1+1,...,nr+1)
g

)
which, in turn, admits the integrating factor

∏r
k=1 f

−(nk+1)
k .
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Rational integrating factors

Theorem.

(a) (Chavarriga et al.:) Any polynomial vector field admitting a Darboux first
integral admits a rational integrating factor.

(b) (Chavarriga et al.:) If a polynomial vector field admits a Darboux first integral
but not a rational first integral then it admits a unique integrating factor.

(c) (Rosenlicht:) If a polynomial vector field admits a rational integrating factor
then it admits a Darboux first integral.
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An intermediate resumé

• Polynomial vector fields with prescribed Darboux integrating factors are well
understood. (Analytic and geometric arguments.)

• They always admit a Liouville first integral (Singer, Christopher)

• Obstructions on the way from special integrating factor µ = f −d11 · · · f −drr to
elementary first integral are relatively well undrstood (analytically and
geometrically).

• Elementary vs. Darboux first integrals? It seems that algebraic arguments are
the most appropriate.
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Some (differential) algebra

Given an algebraic function w over K := C(x , y), we denote its minimal
polynomial by

Mw(T ) := T d +
d∑

i=1

giT
d−i ∈ K[T ].

Here −g1 is called the trace of w and (−1)dgd is called the norm of w . The other
zeros of Mw (in a suitable extension field F of K) are called the conjugates of w .

Lemma. If an algebraic function w is a first integral of a polynomial vector field
then all nonconstant coefficients of its minimal polynomial are first integrals of this
vector field.
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Prelle and Singer, slightly refined

Proposition. If the polynomial vector field X admits an elementary first integral

v +
m∑
i=1

ci log(ui)

where v , u1, . . . , um are nonconstant algebraic functions over K then it admits an
algebraic integrating factor µ in F := K [v , u1, . . . , um]. Moreover, if F̂ is a normal
extension of F with degree [F̂ : K] = n then µn ∈ K.
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Elementary vs. Darboux first integrals

Theorem. Let the polynomial vector field X admit the elementary first integral

v +
m∑
i=1

ci log(ui),

where m > 0 and v , u1, . . . , um are nonconstant algebraic functions over K, and
furthermore the constants c1, . . . , cm are linearly independent over Q. If X does not
admit a rational first integral then the following hold.

(a) Whenever some uj has non-constant norm, or whenever v has non-constant
trace, then X admits a Darboux first integral.

(b) Moreover, if in this setting µ = f −d11 · · · f −drr is an integrating factor for X then
it is uniquely determined (up to a nonzero constant factor) and all di are
nonnegative integers.
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Sketch of the proof

Let F be the smallest normal extension of K which contains v and all ui , and
denote its Galois group by G .
Then

X (σ(v)) +
m∑
i=1

ci
X (σ(ui))

σ(ui)
= 0

for all σ ∈ G , and summation yields

X

(∑
σ∈G

σ(v)

)
+

m∑
i=1

ci
X (
∏

σ∈G σ(ui))∏
σ∈G σ(ui)

= 0.

Now R :=
∑

σ∈G σ(v) is a positive integer multiple of the trace of v , and each
Si :=

∏
σ∈G σ(ui) is a positive integer power of the norm of ui . Hence R and all Si

are rational.
There remains to verify non-constancy.
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Exceptional cases

Remaining problem: Investigate “exceptional” cases admitting an elementary
first integral

v +
m∑
i=1

ci log(ui),

with all ui of constant norm, v of constant trace.

Presumably simplest case: m = 1 (and c1 = 1 with no further loss of
generality). Thus we assume a relation

X (v) +
X (u)

u
= 0

with u 6∈ K and v 6∈ K (otherwise there exists a rational first integral).
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The simplest exceptional cases

Proposition. Let X be a polynomial vector field such that

X (v) +
X (u)

u
= 0.

with u and v non-constant algebraic functions, u having constant norm and v
having constant trace. Moreover assume that X admits no rational first integral.
Then:

(a) The intersection K[u] ∩K[v ] is nontrivial.

(b) If the degree of K[v ] over K is a prime number, then K[v ] ⊆ K[u]. If both
degrees are prime numbers then K[v ] = K[u].
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Quadratic extensions (Part I)

Let X be a polynomial vector field such that

X (v) +
X (u)

u
= 0

with u of constant norm and v of constant trace, both contained in a degree two
extension of K, but neither contained in K.

Proposition. With no loss of generality one may take u and v to satisfy

u2 + 2g · u + 1 = 0 and v = b(g + u)

with a non-constant rational function g and a nonzero rational function b.
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Quadratic extensions (Part II)

Let X = (P, Q) be a polynomial vector field such that

X (v) +
X (u)

u
= 0

with u and v as in the Proposition.

Theorem. There exists a rational function s such that

P = −s ·
(
(g2 − 1)by + (bg − 1)gy

)
,

Q = s ·
(
(g2 − 1)bx + (bg − 1)gx

)
,

defines a polynomial vector field. If one requires P and Q to have relatively prime
entries then s is unique up to a factor in C∗.

Remark. In general such vector fields do not admit a Darboux first integral (which
would necessarily be rational).
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Cubic extensions (Part I)

• Let F = K[u] = K[v ] be a degree three extension, with v of trace zero and u of
norm one (with no loss of generality).

• Search for a polynomial vector field X admitting the elementary first integral
v + log(u) but not a rational first integral.

Proposition. Let µ be the integrating factor of X (which is unique up to a
nonzero scalar). Then F = K[µ] and there exists g ∈ K such that

µ3 − g = 0.

Thus the field extension F : K is a cyclic Galois extension of degree three.
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Cubic extensions (Part II)

Preparation: The field F = K[µ] is a cyclic Galois extension of K, degree three.

• A general element of F has the form

w := a + b · µ + c · µ2; a, b, c ∈ K,

• By Hilbert’s Theorem 90 we may write

u =
σ(w)

w
,

for some nonzero w .

• The trace zero element has the form

v = r · µ + s · µ2; r , s ∈ K.
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Cubic extensions (Part III)

Lemma. Let w , u and v be as above, and denote by N(w) the norm of w . Then
for every derivation Y of K an identity

Y (u)

µ · u
=

1

N(w)
AY +

µ

N(w)
BY

holds, with rational functions AY and BY . Explicitly one has

BY = gbc2
(
Y (c)

c
− Y (b)

b
+

1

3

Y (g)

g

)
+ab2

(
Y (b)

b
− Y (a)

a
+

1

3

Y (g)

g

)
+a2c

(
Y (a)

a
− Y (c)

c
− 2

3

Y (g)

g

)
.
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Cubic extensions (Part IV)

Proposition. Let w , u and v be as above.

(a) There exists a nontrivial polynomial vector field X which admits the first
integral H := v + log u if and only if the identity

Y (s) +
2

3
s · Y (g)

g
+

1

N(w)
BY = 0

holds for all derivations of K.

(b) Given any u ∈ F with norm one, there exists at most one rational function s
such that H (with v = r · µ + s · µ2 and arbitrary r ∈ K) is a first integral for
some nontrivial polynomial vector field.

25 of 28 Lleida 2016 - Sebastian Walcher



Cubic extensions: An example

Notation and terminology as above.
Let g be arbitrary with gx 6= 0, a ∈ C∗ constant and set

w := a + µ, N(w) = g + a3.

Fact. For this choice of w there exists no rational function s such that the
condition in part (a) of the Proposition can be satisfied for Y = ∂/∂x .

To verify this, choose y0 suitably and set ĝ(x) := g(x , y0). The condition reduces to

ŝ ′ +
2

3
ŝ · ĝ

′

ĝ
+

a

3
· ĝ ′

ĝ · (ĝ + a3)
= 0

for ŝ := s(·, y0).
This linear inhomogeneous differential equation has no rational solution. (Use
variation of constants formula and carry out integrations.)
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Some open questions

• Are there nontrivial positive examples in the cubic case? (We do not know.)

• What about first integrals v + log(u) with u and v in a field extension of higher
degree?

• What about the general case?
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Thank you for your attention!
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