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Bifurcation of critical periodic orbits

A singular point p of a polynomial differential system

"

9x “ ppx, yq,
9y “ qpx, yq,

is a center if it has a punctured neighbourhood that consists en-
tirely of periodic orbits surrounding p. The largest open neigh-
bourhood P with this property is called the period annulus of
the center. The period function of the center assigns to each
periodic orbit in P its period.

Compactifying X :“ ppx, yqBx ` qpx, yqBy (e.g., to the Poincaré
disc), the boundary of P has two connected components: the
center itself and a polycycle Π that we call the outer boundary.
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disc), the boundary of P has two connected components: the
center itself and a polycycle Π that we call the outer boundary.

Jordi Villadelprat Unfoldings of saddle-nodes and their Dulac time



Bifurcation of critical periodic orbits

To parametrize the set of periodic orbits in P we take an analytic
transverse section to X on P, for instance an orbit of XK. If
tγsusPp0,1q is such a parametrization, then

s ÞÝÑ T psq :“tperiod of γsu

is an analytic map on p0, 1q.

A critical period is an isolated
critical point of this function, i.e. ŝ P p0, 1q such that

T 1psq “ αps´ ŝqk ` o
`

ps´ ŝqk
˘

with α ‰ 0 and k ě 1. More geometrically, we shall say that γŝ
is a critical periodic orbit.
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Bifurcation of critical periodic orbits

The study of critical periodic orbits is analogous to the study of
limit cycles.

We are concerned with the bifurcation of critical periodic orbits
from the outer boundary. Of course this occurs in case that X
depends on a parameter, say a P A Ă Rd. Thus, for each fixed
â P A, our aim is to study of the number of critical periodic orbits
of Xa that emerge or disappear from Πâ as we move slightly the
parameter a « â.

We call this number the criticality of the outer boundary and
its precise definition is the following, where dH stands for the
Hausdorff distance between compact sets.
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Bifurcation of critical periodic orbits

Definition

The criticality of pΠâ, Xâq with respect to the deformation Xa

is Crit
`

pΠâ, Xâq, Xa

˘

:“ infδ,εNpδ, εq, where Npδ, εq is the
supremum of the number of critical periodic orbits γ of Xa with
dHpγ,Πâq ď ε and }a´ â} ď δ.

Definition

We say that â P A is a local regular value of the period function
at the outer boundary of the period annulus if
Crit

`

pΠâ, Xâq, Xa

˘

“ 0. Otherwise we say that it is a local
bifurcation value of the period function at the outer boundary.
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Bifurcation of critical periodic orbits

Since 2001, together with D. Maŕın and P. Mardešić, we have
been developing tools to study the bifurcation of critical periodic
orbits from the outer boundary. Our testing ground has been the
dehomogenized Loud’s family

Xa

"

9x “ ´y ` xy,
9y “ x`Dx2 ` Fy2,

where a :“ pD,F q P R2, which is the most interesting stratum of
quadratic centers from the point of view of the period function.
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Bifurcation of critical periodic orbits

Mardešić, Maŕın and Villadelprat, On the time function of
the Dulac map for families of meromorphic vector fields,
Nonlinearity (2003).
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Maŕın and Villadelprat, On the return time function around
monodromic polycycles, JDE (2006).
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Bifurcation from the polycycle

Theorem: (2003-06)

‚ R2ztΓB Y ΓUu are local
regular values,

‚ ΓB are local bifurcation
values.
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Conjectural bifurcation diagram of the period function
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Theorem C: Study at tD P p´1, 0q, F “ 1u

F ă 1 F “ 1 F ą 1

Setting ε “ 2pF ´ 1q, one can see that by a local change of
coordinates this saddle-node unfolding can be brought to

1

yUpx, yq

`

xpx2 ´ εqBx ´ p2F ´ x
2qyBy

˘

,

where y “ 0 corresponds to the line at infinity.
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Theorem B: A more general setting

More generally, in Theorem B we obtain an asymptotic expan-
sion, uniform with respect to the parameters, of the Dulac time
of a saddle-node unfolding of the following type:

1

yUpx, yq

`

PεpxqBx ´ V pxqyBy
˘

, (1)

where Pε, U and V are analytic functions to be described later.

In fact, we show that any saddle-node unfolding which is locally
Darboux integrable is orbitally analytically equivalent to (1).
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From Theorem B to Theorem A

To prove Theorem B we need to develop some results that in
principle have nothing to do with the Dulac time.

Since we think that they are interesting on its own we state them
separately as Theorem A.

For a better understanding of the statement of Theorem A, we
briefly outline without technicalities the underlying ideas that
lead to the proof of Theorem B.
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From Theorem B to Theorem A

For simplicity, consider 1
yUpx,yq

`

PεpxqBx ´ V pxqyBy
˘

with ε “ 0
and suppose that the origin is a saddle-node with a hyperbolic
sector in the first quadrant.

1 s

1

Its Dulac time T psq can be written as T “
ř

ně1 Tn, where each
term Tn is in turn the Dulac time of 1

ynUnpxq

`

P0pxqBx´V pxqyBy
˘

,

where Upx, yq “
ř

ně1 Unpxqy
n´1.
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From Theorem B to Theorem A

It turns out that y “ Tnpxq is a trajectory of the vector field
P0pxqBx `

`

nV pxqy ´ Unpxq
˘

By arriving backward in time to the

saddle-node at
´

0, Unp0qnV p0q

¯

through the parabolic sector in x ě 0.

y “ Tnpxq

Jordi Villadelprat Unfoldings of saddle-nodes and their Dulac time



From Theorem B to Theorem A

It turns out that y “ Tnpxq is a trajectory of the vector field
P0pxqBx `

`

nV pxqy ´ Unpxq
˘

By arriving backward in time to the

saddle-node at
´

0, Unp0qnV p0q

¯

through the parabolic sector in x ě 0.

y “ Tnpxq

Jordi Villadelprat Unfoldings of saddle-nodes and their Dulac time



From Theorem B to Theorem A

This is the key point and explains why beginning with the prob-
lem of computing the Dulac time associated to a hyperbolic sector,
we end up studying the trajectories arriving through a parabolic
sector.
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Assumptions in Theorem A

We consider the unfolding of a saddle-node

X “ PεpxqBx `
`

λVapxqy ´ Upxq
˘

By, (2)

parametrized by pε, a, λ, Uq,

with ε « 0, a in an open subset A
of Rα, λ ą 0, U P U and

‚ Pεpxq “ P px; εq is an analytic function in px, εq, for |x| ď r,
such that P0pxq has a zero of order µ` 1 ě 2 at x “ 0;

‚ Vapxq is analytic in px, aq, for |x| ď r, with Vap0q “ 1, for all
a P A;

‚ U is the space of series Upxq “
ř

jě0 ujx
j P Rtxu, with

convergence radius greater than r ą 0.
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Assumptions in Theorem A

By rescaling, r “ 1 and Vapxq ą 0, for |x| ď 1, for all a P A. We
endow U with the norm }U} :“

ř

jě0 |uj | and with this norm it
becomes a Banach space. We denote U1 :“ tU P U : }U} ď 1u.

By Weierstrass preparation theorem and rescaling, we can assume
that Pεpxq is a polynomial of degree µ`1 in x, with P0pxq “ xµ`1.

Notice that the singularity px, yq “ p0, Up0q{λq is a saddle-node
of X|ε“0, whose (real) parabolic sector is contained in the half
plane x ě 0. We will assume that Pεpxq has a real root for ε « 0.

Jordi Villadelprat Unfoldings of saddle-nodes and their Dulac time



Assumptions in Theorem A

By rescaling, r “ 1 and Vapxq ą 0, for |x| ď 1, for all a P A. We
endow U with the norm }U} :“

ř

jě0 |uj | and with this norm it
becomes a Banach space. We denote U1 :“ tU P U : }U} ď 1u.

By Weierstrass preparation theorem and rescaling, we can assume
that Pεpxq is a polynomial of degree µ`1 in x, with P0pxq “ xµ`1.

Notice that the singularity px, yq “ p0, Up0q{λq is a saddle-node
of X|ε“0, whose (real) parabolic sector is contained in the half
plane x ě 0. We will assume that Pεpxq has a real root for ε « 0.

Jordi Villadelprat Unfoldings of saddle-nodes and their Dulac time



Assumptions in Theorem A

By rescaling, r “ 1 and Vapxq ą 0, for |x| ď 1, for all a P A. We
endow U with the norm }U} :“

ř

jě0 |uj | and with this norm it
becomes a Banach space. We denote U1 :“ tU P U : }U} ď 1u.

By Weierstrass preparation theorem and rescaling, we can assume
that Pεpxq is a polynomial of degree µ`1 in x, with P0pxq “ xµ`1.

Notice that the singularity px, yq “ p0, Up0q{λq is a saddle-node
of X|ε“0, whose (real) parabolic sector is contained in the half
plane x ě 0. We will assume that Pεpxq has a real root for ε « 0.

Jordi Villadelprat Unfoldings of saddle-nodes and their Dulac time



Assumptions in Theorem A

In what follows, ϑε will denote the biggest real root of Pεpxq.
Our results refer to this root because we can approach it from
the right inside a parabolic sector that does not shrink as ε tends
to zero.

In the sequel, we will assume

(H0) P 1εpϑεq ą 0, for ε ff 0, so that the singular point

px, yq “

ˆ

ϑε,
Upϑεq

λVapϑεq

˙

is a node of X.
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Assumptions in Theorem A

The polynomial Pεpxq need not be irreducible. We identify the
two branches that contain the root x “ ϑε, for ε ě 0 and ε ď 0,
and we apply Puiseux theorem to each one, obtaining ρ˘ P N
and analytic functions σ˘pzq P Rtzu, such that

ϑε “

#

σ´
`

p´εq1{ρ´
˘

, if ε ď 0,

σ`
`

p`εq1{ρ`
˘

, if ε ě 0.

We treat the unfolding p2q, as εÑ 0`, or εÑ 0´. Since the sub-
stitution ε ÞÝÑ ´ε interchanges both situations, we will restrict
to the case ε ě 0

Jordi Villadelprat Unfoldings of saddle-nodes and their Dulac time



Assumptions in Theorem A

The polynomial Pεpxq need not be irreducible. We identify the
two branches that contain the root x “ ϑε, for ε ě 0 and ε ď 0,
and we apply Puiseux theorem to each one, obtaining ρ˘ P N
and analytic functions σ˘pzq P Rtzu, such that

ϑε “

#

σ´
`

p´εq1{ρ´
˘

, if ε ď 0,

σ`
`

p`εq1{ρ`
˘

, if ε ě 0.

We treat the unfolding p2q, as εÑ 0`, or εÑ 0´. Since the sub-
stitution ε ÞÝÑ ´ε interchanges both situations, we will restrict
to the case ε ě 0

Jordi Villadelprat Unfoldings of saddle-nodes and their Dulac time



Assumptions in Theorem A

Besides the natural assumption (H0), we need to impose two
technical conditions on Pεpxq “ P px; εq. In order to state them
precisely, we introduce the function

Qps, εq :“
P
`

s` σpεq; ερ
˘

s
,

which is analytic at ps, εq “ p0, 0q and polynomial in s. Moreover,
Qps, 0q “ sµ and, on account of (H0), Qp0, εq “ χ εν ` . . . with
χ ą 0, for some ν P N.

Jordi Villadelprat Unfoldings of saddle-nodes and their Dulac time



Assumptions in Theorem A

(H1) The Newton’s diagram of Qps, εq has only one compact
side (connecting the endpoints pµ, 0q and p0, νq), i.e. Q
admits a Taylor’s expansion of the form

Qps, εq “
ÿ

i
µ
`
j
ν
ě1

qijs
iεj .

(H2) The principal pµ, νq-quasi-homogeneous part of Qps, εq is
positive definite on the first quadrant, i.e.

ÿ

i
µ
`
j
ν
“1

qij sini θ cosj θ ą 0, for all θ P
”

0,
π

2

ı

.

Notice that (H2) implies (H0) because P 1εpϑεq “ Qp0, εq.
On the other hand, if gcdpµ, νq “ 1, then (H1) implies (H2).
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Assumptions in Theorem A

Let ypxq “ ypx;x0, y0, ε, a, λ, Uq be the trajectory of

X “ PεpxqBx `
`

λVapxqy ´ Upxq
˘

By,

i.e. the solution of the linear differential equation

Pεpxqy
1pxq “ λVapxqypxq ´ Upxq, (3)

with ypx0q “ y0.

We have ypxq “ Dpxq y0
Dpx0q

` yLpxq, where

Dpxq “ Dpx; ε, a, λq :“ exp

ˆ

λ

ż x

1

Vapsq

Pεpsq
ds

˙

yLpx;x0, ε, a, λ, Uq :“ Dpx; ε, a, λq

ż x0

x

Upsq

Pεpsq

ds

Dps; ε, a, λq
.
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Assumptions in Theorem A

Here Dpxq is a fundamental solution of the homogeneous equa-
tion. Moreover, yLpxq is the particular solution with initial con-
dition y0 “ 0 and it depends linearly on U P U .

Our first main result describes how the trajectories of X arrive

at the node px, yq “
´

ϑε,
Upϑεq
λVapϑε

q

¯

given by hypothesis (H0). For

convenience, in its statement we use the differential operator

Θλ “
1

λ
sBs.
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Statement of the orbital result

X “ PεpxqBx `
`

λVapxqy ´ Upxq
˘

By,

Theorem A (1)

Consider the saddle-node unfolding given in p2q with ε ě 0.
Assume that Pεpxq satisfies (H1) and (H2).

Then, there exist
functions cjpε, λ, a, Uq, j P Z`, satisfying that, for each
`, k P Z`, λ0 ą 0 and every compact set Ka Ă A, there exists
ε0 ą 0, such that c0, . . . , c` are analytic on
A :“ r0, ε0s ˆKa ˆ rλ0,8q and are uniformly bounded linear
operators on U and the following assertions hold:

(a) . . .

(b) . . .
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Statement of the orbital result

Pεpxqy
1pxq “ λVapxqypxq ´ Upxq, with ypx0q “ y0.

Theorem A (2)

(a) for every compact set Kx Ă p0, 1s, the particular solution yL
of p3q is of the form

yLps` ϑε;x0, ε, a, λ, Uq “
ÿ̀

j“0

cjpε
1{ρ, a, λ, Uqsj

` s`h`ps;x0, ε, a, λ, Uq,

where Θr
λh`psq Ñ 0, as sÑ 0`, uniformly on KxˆAˆU1,

for r “ 0, 1, . . . , k;
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Statement of the orbital result

Pεpxqy
1pxq “ λVapxqypxq ´ Upxq, with ypx0q “ y0.

Theorem A (3)

(b) the fundamental homogeneous solution of p3q is of the form
Dps` ϑε; ε, a, λq “ s`h`ps; ε, a, λq, where Θr

λh`psq Ñ 0, as
sÑ 0`, uniformly on A, for r “ 0, 1, . . . , k.
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Statement of the temporal results

Recall that we consider the saddle-node unfolding

1

yUapx, yq
pPεpxqBx ´ VapxqyByq .

Under assumption (H0), the point pϑε, 0q, where ϑε is the biggest
root of Pεpxq, is now a saddle of the above differential system.
The period annulus is in the quadrant y ě 0 and x ě ϑε.

In our next result, T ps; ε, aq is the Dulac time of the above un-
folding between the transverse sections ty “ 1u and tx “ 1u, i.e.
it is the time that the trajectory starting at ps`ϑε, 1q spends to
arrive to tx “ 1u. We also use Θ “ Θ1.
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Statement of the temporal results

Theorem B

Assume that Pεpxq satisfies conditions (H1) and (H2). Then
there exist functions cjpε, aq, j P Z`, satisfying that, for each
`, k P Z` and every compact set Ka Ă A, there exists ε0 ą 0
such that c0, . . . , c` are analytic on r0, ε0s ˆKa; and the Dulac
time can be written as

T ps; ε, aq “
ÿ̀

j“0

cjpε
1{ρ, aqsj ` s`h`ps; ε, aq,

with Θrh`psq Ñ 0, as sÑ 0`, uniformly on r0, ε0s ˆKa, for
r “ 0, 1, . . . , k.
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Proof of Theorem B

Consider `, k P Z` and a compact set Ka Ă A. We decompose
the given function Uapx, yq “

ř

ně1 Un,apxqy
n´1, with Un,a P U ,

for all n P N and a P Ka.

Since Uapx, yq is absolutely convergent on |x|, |y| ď 1, the series
ř

ně1 }Un,a}y
n and all its yBy derivatives have convergence radius

at least 1.

Consequently,

ÿ

ně1

nr}Un,a} ă 8, for all r P Z` and a P Ka.
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Proof of Theorem B

Let ypx; sq be the trajectory of 1
yUapx,yq

pPεpxqBx ´ VapxqyByq with

initial condition yps; sq “ 1. Set |ε :“ ε1{ρ. The Dulac time is

T ps; |ε, aq “
ż 1

s`ϑε

Ua
`

x, ypx; sq
˘

ypx; sq

Pεpxq
dx

“

ż 1

s`ϑε

ÿ

ně1

Un,apxqy
npx; sq

Pεpxq
dx.

We define

Tnpsq :“

ż 1

s

Un,apxqy
npx; sq

Pεpxq
dx.
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Proof of Theorem B

Then, due to Bsypx; sq “ ypx; sqVapsqPεpsq
,

BsTnpsq “

ż 1

s

Un,apxqBsy
npx; sq

Pεpxq
dx´

Un,apsq

Pεpsq

“
nVapsq

Pεpsq
Tnpsq ´

Un,apsq

Pεpsq

Hence Tnpxq is the trajectory with initial condition Tnp1q “ 0 of

X “ PεpxqBx `
`

λVapxqy ´ Upxq
˘

By,

taking Upxq as Un,apxq, Vapxq as Vapxq
Vap0q

and λ as nVap0q.

Jordi Villadelprat Unfoldings of saddle-nodes and their Dulac time



Proof of Theorem B

Then, due to Bsypx; sq “ ypx; sqVapsqPεpsq
,

BsTnpsq “

ż 1

s

Un,apxqBsy
npx; sq

Pεpxq
dx´

Un,apsq

Pεpsq

“
nVapsq

Pεpsq
Tnpsq ´

Un,apsq

Pεpsq

Hence Tnpxq is the trajectory with initial condition Tnp1q “ 0 of

X “ PεpxqBx `
`

λVapxqy ´ Upxq
˘

By,

taking Upxq as Un,apxq, Vapxq as Vapxq
Vap0q

and λ as nVap0q.

Jordi Villadelprat Unfoldings of saddle-nodes and their Dulac time



Proof of Theorem B

Set Tnps; |ε, aq :“ Tnps` ϑεq. Then, by applying Theorem A,

Tnps; |ε, aq “
ÿ̀

j“0

cj
`

|ε, a, nVap0q, Un,a
˘

sj`s`h`
`

s; ε, a, nVap0q, Un,a
˘

,

with cj analytic on p|ε, aq P r0, ε0sˆKa.

Moreover,

γj :“ sup
 

|cj
`

ε, a, λ, U
˘

| :

pε, a, λ, Uq P r0, ε0s ˆKa ˆ rλ0,`8q ˆU1u ă `8

M r
` psq :“ sup

 

|Θr
λh`

`

s; ε, a, λ, U
˘

| :

pε, a, λ, Uq P r0, ε0s ˆKa ˆ rλ0,`8q ˆU1u ă `8,

with M r
` psq Ñ 0, as sÑ 0`, for r “ 0, 1, . . . , k.
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Proof of Theorem B

In particular, for pε, a, nq P r0, ε0s ˆKa ˆ N and r “ 0, 1, . . . , k,

|cjp|ε, a, nVap0q, Un,aq| ď γj}Un,a}

|Θr
λh`ps; ε, a, nVap0q, Un,aq| ďM r

` psq}Un,a}.

Here, it is crucial that Theorem A holds for λ unbounded and U
varying in the Banach space U .

We define at this point the coefficients

cjp|ε, aq :“
ÿ

ně1

cjp|ε, nVap0q, a, Un,aq, for all j P Z`,

which are well-defined because the series are uniformly conver-
gent on p|ε, aq P r0, ε0sˆKa
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Proof of Theorem B

Similarly, the series

h`ps; ε, aq :“
ÿ

ně1

h`ps; ε, a, nVap0q, Un,aq

is uniformly convergent on ps, |ε, aq P r0, s0sˆr0, ε0sˆKa, s0 « 0,
and it tends to zero, as sÑ 0`, uniformly on pε, aq.

Hence,
ÿ

ně1

Tnps; |ε, aq “
ÿ

ně1

ÿ̀

j“0

cjp|ε, a, nVap0q, Un,aqs
j

` s`
ÿ

ně1

h`ps; ε, a, nVap0q, Un,aq “
ÿ̀

j“0

cjp|ε, aqs
j ` s`h`ps; |ε, aq

is uniformly convergent on ps, |ε, aq P r0, s0sˆr0, ε0sˆKa.
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Proof of Theorem B

For this reason, we can commute summation and integration in

T ps; |ε, aq “
ż 1

s`ϑε

ÿ

ně1

Un,apxqy
npx; sq

Pεpxq
dx “

ÿ

ně1

Tnps; |ε, aq.

Thus T ps; |ε, aq “
ř`
j“0 cjp|ε, aqs

j ` s`h`ps; |ε, aq. Finally,

ÿ

ně1

|Θr
1h`ps; ε, a, nVap0q, Un,aq|

“ V r
a p0q

ÿ

ně1

nr |Θr
λh`ps; ε, a, nVap0q, Un,aq|

ď Vap0q
rM r

` psq
ÿ

ně1

nr}Un,a}

is uniformly convergent in ps, |ε, aq and tends to zero, as sÑ 0`,
uniformly on p|ε, aq.
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Statement of the temporal results

We particularize the unfolding in Theorem B by taking

Pεpxq “ xpxµ ´ εq and Uapx, yq “ xmŪapx, yq.

Corollary B

There exist functions cjpε, aq, j P Z`, satisfying that for each
`, k P Z` and every compact set Ka Ă A, there exists ε0 ą 0
such that c0, . . . , c` are continuous on r´ε0, ε0s ˆKa, and

T ps; ε, aq “
ÿ̀

j“0

cjpε, aqs
j ` s`h`ps; ε, aq

with Θrh`psq Ñ 0, as sÑ 0`, uniformly on r´ε0, ε0s ˆKa, for
r “ 0, 1, . . . , k. Moreover, cjpε, aq “ 0, for ε ď 0 and
j “ 0, 1, . . . ,m´ 1.
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