Fourth Symposium on Planar Vector Fields
September 5-9th, 2016

UL R RN "

The Teixeira singularity degeneracy and its
bifurcation in PWL systems

%/

Enrique Ponce

é Joint work with Rony Cristiano & Daniel Pagano (UFSC, &,
Florianopolis, Brasil) and Emilio Freire (Univ. de Sevilla), U .



Introduction

We consider 3D piecewise linear Filippov differential
systems with a separation plane, having a two-fold point
with invisible tangencies, that is, the so-called Teixeira
singularity (TS-point, for short).

For some parameter values this singularity undergoes a
compound bifurcation: there appears a sliding bifurcation
involving a pseudo-equilibrium point and, simultaneously,
a bifurcation associated to the birth of a crossing limit
cycle.

- After determining a generic canonical form, we show
how to characterize such a compound bifurcation.

Our motivation comes from the natural appearance of
TS-points in the control of Boost converters.
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A non-trivial yet manageable example
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A non-trivial yet manageable example
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Yos = {(z,y,2) ER?: 2 =0, y > 0and z > 0}
Yre = {(z,y,2) €ER?’: 2 =0, y <0and z <0}
Y. ={(z,y,2) €R’: =0, y>0and z < 0} Qj:O

(z,y,2)

P ={(z,y,2) €ER’: =0, y<0and z > 0}
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The sliding dynamics
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The sliding dynamics

F(x) = Z—ay
I —2z+y(1l —y) ]

Pseudo-equilibrium point at
x(a) = (0,y(a), 2(a)) = (0,1 — 2a,a(1 — 2a))




The sliding dynamics

F(x) = Z—ay
I —2z+y(1l —y) ]

Pseudo-equilibrium point at
x(a) = (0,y(a), 2(a)) = (0,1 — 2a,a(1 — 2a))




The sliding dynamics

Desingularized sliding v.f.

Pseudo-equilibrium point at
x(a) = (0,y(a), 2(a)) = (0,1 — 2a,a(1 — 2a))




The sliding dynamics

=Desingularized sliding v.f. =

Pseudo-equilibrium point at
x(a) = (0,y(a), 2(a)) = (0,1 — 2a,a(1 — 2a))




The crossing dynamics bifurcation (periodic orbits?)

T o= -y
v 1
;o= =2

v (O] [t + 200)/2 0)
y+(t) | = t + Yo with [ y4(0)| = |yo
24 (1) - —2t+2zp 24(0) 20

so that Py (Zg) = (_4;?3_ Zo>



The crossing dynamics

The integration of the (-) vector field is much more involved but
the choice of stepped eigenvalues allows to express solutions in
an algebraic way.

—0a 0 1
A= 6a> 0 O Spec(A™) = {—a, —2a, —3a}
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Looking for P~ (y, z) we write

ESNO) I (o1 4 [ 1~
y:l(t) — 6—2 —5&2 -+ €_A t Yo 6 5 —5&2
E0) ¢ - 6a | 20 “ - 6a
The condition z~*(t) = 0 gives O<u=e <1, a>0
1 2 —
a = ( (2 +u Syo), and then
3(—3 + u)zp
1, v —1—=9u+9u® 4+ u’ 4 6(1 — 3u)yo
Yy_ (U) o 2 )
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Finally, imposing

p, (Y = - —2yo _ p-1(¥%) _ y;(u)
20 —4yo + 20 20 2= (u)

we get

1+ 2u + 6u? + 2u> + u*
a = , and then
2u(1 + 10u 4 u?)

(—1 + u)(1 + 10u + u?)
6(1+u)(1—4u—+u?)
(=1 4+ u)(—1 + 6u + 5u? + 2u?)
6a(1l + u)(1 — 4u + u?)

20 —

Note that 1 — 4u + u* = (u — 2)? — 3, so that the above expressions are only
valid for 2 —v/3 < u < 1. Also, lim,_,;- a = 1/2, limu_>(2_\/§>+ a = 0.



A periodic orbit exists for 0.5 < a < 1,
corresponding to a decreasing of v in the
interval 2 — v/3 < u < 1. The periodic
orbit is born from the T'S-point at a =
0.5 and disappears in a bifurcation at
infinity for a = 1.




A periodic orbit exists for 0.5 < a <1, 10 ¢
corresponding to a decreasing of v in the
interval 2 — v/3 < u < 1. The periodic
orbit is born from the T'S-point at a = .
0.5 and disappears in a bifurcation at °® :
infinity for a = 1. '

U o5

We can compute in terms of u, the de-
terminant and trace of the derivative
DP(yo,2) = DP-' o DP,(yo, %) to
check the stability of the periodic orbit.

o




The stability triangle in the (trace,det)-plane

1'5:_ det Neimar-Sacker
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Remark The two roots of the quadratic equation

150 z? — trace -z + det = 0

are in the interior of the unit disk of the complex
plane if and only if the two inequalities

|det | < 1
| trace | < det +1

hold.



The followed path for 0.5< a <1 in the (trace,det)-plane

1.5

- det

0.5

-0.5

-1.0

-1.5

The red path in the (trace,det)-plane starts at the
Bogdanov-Takens point (2,1). Note that the final
point in the path is over the horizontal axis, namely

(98 — 56v/3,97 — 56V/3).

For this example, the crossing periodic orbit which
is born from the T'S-point is always of stable node

type.



Such a global control of the compound bifurcation for
the Teixeira singularity is rather unusual: in what follows,
we show how it is possible to characterize locally this
bifurcation for discontinuous linear systemes.
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The general DPWL case

There exist three vectors w—, w', v € R?, with v # 0, two
3 x 3 square matrices A~ and AT and a scalar § € R, such that

(a) F(x) = ¢

F~(x) = A x -

~w, if vix+4d<0

Fr(x)=ATx-

-w, i vix+46>0

(b) A™x+w~ # ATx +w™ generically, when vix +§ = 0.

x = F'(x)

The switching manifold is the plane

Y={xcR’: vix+6=0}

x =F (x)

.
B




Hypotheses for having a TS-point

(H1) The tangency lines

T ={xeX:(v,F (x)) =0}
T=I{xecX:(v,FT(x)) =0}

intersect transversally at a point X.

(H2) At the two-fold point X both tangencies are
invisible: v A"F~(X) > 0 and v ATF*(x) < 0.



The canonical form for DPWLS with a TS-point

Proposition. Under hypotheses (H1) and (H2), it is possible through
an invertible linear change of coordinates and a rescaling of time, to
rewrite the system in the canonical form

. JF (x), ifz <0,
X_{Fﬂ@,ﬁx>a (1)

with x = (2,9, z) € R3, where the linear vector fields F* : R3 — R?
are

fF =1 0] [z] [O] fi 0 1] [z

Fr(x)= |97 95 93| |yl+|1]|, F®) =91 95 95| |y|l+

hi hi h3i| |z vy hy hy hsy| |%

for some constants f1 : g1 : 92 : 93 : hli, hQi, hjE and v4.




The canonical form for DPWLS with a TS-point

Proposition. Under hypotheses (H1) and (H2), it is possible through
an invertible linear change of coordinates and a rescaling of time, to
rewrite the system in the canonical form

. JF (x), ifz <0,
X_{Fﬂ@,ﬁx>a (1)

with x = (2,9, z) € R3, where the linear vector fields F* : R3 — R?
are

fF =1 0] [z] [O] fm 0 1] [«] [O]
Fr(x)=|g7 95 95| |yl+|1|, FF&®) = |9y 95 95| |y|+]|v-]|,
hT Ry hT| |z| |vs hi hy h3y| |z| |1

for some constants fli, gli, gQi, ggc, hli, hQi, hgt and v4.

T, ={(z,y,2) €ER’: 2 =y =0} T_={(z,y,2) €R’: o =2z =0}
¥ ={x=(z,9,2) €ER’: 2z =0} TS-point at the origin!



The canonical form for DPWLS with a TS-point

Yas = {(z,y,2) €ER?’: =0, y > 0and z > 0}
Yrs = {(z,9,2) €eR*: =0, y <0and z < 0}
Y, ={(z,y,2) €ER’: =0, y>0and z <0}
P ={(z,y,2) €ER’: =0, y<0and z > 0}




The sliding dynamics bifurcation

The sliding vector field associated to system (1) is

1

F*(0,y,2) =

y+=z

v_y+ 2+ g, 2 + (95
y+uviz+hyy?+ (hy

We work with the desingularized system

x = F3(0,y,2) :=

0

0

vy +z+g9, 97+ (95 +93)yz+ g5 2°

g3 )yz + gngQ .
hy )yz + h3 2.

y+viz+hyy? + (b + h3)yz + hiz2?




The sliding dynamics bifurcation

Pseudo-equilibrium points come from solving the two equations

v_y+z+[y z]G Y = 0,

-

Y+ vz + [y Z]H

Il\2 @l
|
=

where

G = g%r gi and H = hy g
92 93 _




The sliding dynamics bifurcation

Pseudo-equilibrium points come from solving the two equations

) v_y+z+[y z]G d = 0,
J(0,0) = < "~ -
- y+ vz + [y Z]H

N

RS
|
=

where

95 g3 hy hg
G = and H =
95 g5 hy h3




The sliding dynamics bifurcation

Pseudo-equilibrium points come from solving the two equations

) ) v_y+z+[y z]G g = 0,
J(0,0) = |7 Ul+ -« :
- - Y+ vz + [y Z]H . = 0,
where ] ) ] )
99 93 hy Dy
G = and H = .
9 95 hy  hy

Apart from the origin, we can have another non-trivial emanating
branch for v_v; = 1 (transcritical bifurcation). We assume all
parameters fixed excepting

- 1+e

=

v_ =wv_(¢e):




The sliding dynamics bifurcation

Pseudo-equilibrium points come from solving the two equations

) v_y+z+[y z]G d = 0,
J(0,0) = < .
- Y+ vz H [y Z]H

N

RIS
|
f=

where

95 g3 hy hg
G = and H =
95 g5 hy h3

(vpo- —=Dy+ |y z| (v+G — H) i =0,

y+v+z+[y Z}H 4 =

N
1



The sliding dynamics bifurcation

We can use the equivalent system of equations

5y+[y Z} (U_|_G—H) Y :O,

: N

Y+ vyz+ [y Z]H Z = 0.

Using the implicit function theorem for the second equation at (y,z) = (0,0)
we get that, for z small, solutions must satisfy

[Z] — [_1’1 2+ 0(z?). We need v, <0

Substituting this expansion in the first equation, desingularizing it and assuming

we get



The sliding dynamics bifurcation

Proposition (Pseudo-equilibrium transition) Assuming
that the criticality coefficient

ks = |—vy 1] (v4G — H) _TJF #+ 0

the following statements hold.

(a)

(b)

System (2) undergoes a transcritical bifurcation for ¢ = 0,

so that there exists a branch of equilibria (y(¢), Z(¢)) with
(5(0), 2(0)) = (0,0) and (7 (0), 2(0)) = (7=, 2 ).

For the particular case where v, < 0, the emanating branch
is located at the quadrants with yz > 0. If kg > 0 (kg < 0)
then in passing from € < 0 to € > 0 the origin passes from
being a saddle to a stable node, while the nontrivial equi-
librium passes from being a stable node in the first (third)
quadrant to be a saddle in the third (first) quadrant.




The sliding dynamics bifurcation

Theorem S Assuming vy < 0, v— < 0 and kg # 0, system (1) has for ¢ = v_vy — 1 with
|| > 0 small, one pseudo-equilibrium point x(¢) = (0, 5(¢), Z(¢)), such that

(#(6), 5(e)) = (—+ “ et o),

and the following statements hold.

(a) (Supercritical case) If kg > 0, then x(g) € X5 is a stable pseudo-node for ¢ < 0, being
x(g) € X,5 a pseudo-saddle for € > 0.

(b) (Subcritical case) If kg < 0, then x(¢) € ¥,5 is an unstable pseudo-node for ¢ < 0,
being x(¢) € 3,5 a pseudo-saddle for € > 0.

ks = |—vy 1] (v4G — H) T -

1 e>0

e=v3v_ —1=0



The crossing dynamics bifurcation (periodic orbits?)




The crossing dynamics bifurcation (periodic orbits?)

()0

Involution property




The crossing dynamics bifurcation (periodic orbits?)

:

Involution property

()3 )5

Invariance of the tangency lines




The structure of return maps
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The structure of return maps

1 O] mw{qlﬁy &)ﬁz} +y{cﬂ{ﬁy + clhyz - ?{32} o0(4)

2oy 1] |2 H%y + g3p2 Ca1Y? - Hﬂzyz + 332
C]i} Y + +
o1 = v+(q11 q22);
cfl — —fu+cf2 — (qfl)Q, Involution property
C—I— — 0:
i \
Cog = U+(012 2023) T qzz(%z q71)/2.

] o] e e e o
d21Y T {oo% Co1Y™ T CaoYz T Ca3<




The structure of return maps

|
N |
S =
_|_
-)
I—I
I—I
Nag
I—I

{qny %Z} oy P?my

T iy + a2

45 = 0;

q{l = v+(q1+i q2+2)+; 2

0#1 = —vycyy — (G11)%

Ci3 = 0;

Cap = V(] — 2¢33) + G35(035 —

=t

QQ_l — 07

12 = V—(qa9
Co3 = —V_Cyy —
Co1 = 0;

Cilg = V— (02_2

{quy— &EHZZ} L {Cizﬂ

4 cooyz + il 27

%{y T (oo%<

— CI1—1);

(QQQ)Q;

—2¢11) + 11 (q;

0219

qi1)/2.

CA1Y

— QQ_Z)/Q'

+ 2
+cloyz + Pg?
+ bz + c;?,f} How

Involution property

e ) o

Involution property



Looking for non-trivial fixed points

We impose the equality P, (y,z) = P~*(y, ), to obtain

0= —2y+2v_z {¢1y° — Y2 — 22" + ey + (cfy — e)y’z — cpyz® — ez’ + 0(4),
0= —2v1y+22 1 q31y° + ooz — 2" + chy° + Y’z + (35 — Cap)yz” — c332° + O(4).

V

Again, we can have a bifurcation at v, v_ = 1 so that we do
a new bifurcation analysis by assuming all parameters fixed,
excepting v_, and take

1 +e
=

UV_

Note that, from the second equation and the implicit function
theorem, we can assume the existence of a function p(y, €) such

that

2=y p(y.e), with p(0,0) =vy. | eneedvr <0




Looking for non-trivial fixed points

We get z =y - p(y, ) with

)

— Y
p(y,€) = vy — (q;rl - q22(5)v+) 9 ™ [_2631 + 92241, — qap)v1+

_|_

- - — — Y
+(2090(2) — 2¢5 + 2¢33 — 2455(€)q1 — 422(€)425) vl — 2022(5)1}—(5)”1} 1 RRERE

After substituting z in the first equation, we can desingularize it to get

0 =2¢—(q7 — a1 (e)vy) ey + Ple)y” + ...

1
P(e) = TR 2c3; + (2(q11)° — 2411435 + (g33)°) v+

+ (—2c11(€) + 2c55(e) + 263 — 2¢33 + g1, (€) @y + axa(€)dy) v+
+ (q171(8)” = 2q11(€)aza(€) + 2¢55(€)?) v + 2¢13(e)v + O(e))]




Looking for non-trivial fixed points

Clearly, it is more convenient to parameterize the emanating branch in terms
of y, so that we get the expansion

E = KkRC- y2 -+ O(y3)7

where the criticality coeflficient is

1
KCe = m [20;1 T (2(q1+1)2 — 2¢{1455 + (6155)2) U+

+ (=2¢11(0) + 2¢,(0) + 265 — 2¢55 + 411 (0)q1y + 422(0)g55) v5 +
+ (91_1 (0)2 — 2¢11(0)g55(0) + 2q2_2(0)2) Ui + ch—g(o)vi]

In short, depending on the sign of ko we have a subcritical or supercritical

bifurcation of non-trivial fixed points with i
za 5
2(y) = vy -y + O(y?), . )
e(y) = ke -y° + O(y?). r :
) 2ic




Topological type of non-trivial fixed points

Just computing the derivatives of the Poincaré half-return maps,
and evaluating them at the branch of non-trivial fixed points,
we get DP(y) = D (P_o Py)(y,2(y)) and the expansions for
its determinant ant trace, namely

+dyy + day® 4+ O(y?),

det DP(y) =1
2+ ty + t2y” + O(y°).

trace D P(y)

It turns out that t1 = d;. When this common value vanishes, we have a degeneracy that should
require much more long computations. We define ¢ := t; = d;, and the computations give

o= —2qf] + 435 + (2¢55(0) — ¢11(0)) v,

1 _ _ _ _ 2
do = = [G(Qﬁ)z — 56]f1 (QS_Q —q11(0)vy + 2q22(0)7}+) + (q5r2 —q11(0)vy + 26]22<0)U+) } 7

2
1
to = T on . [8021 ( (¢:7)” — 3¢31435 + 3(q35) )U+‘|‘
_|_
+ <_8011(0) + 855 (0) + 8(312 8023 — ql_l(o)qll + 10‘12_2(0)qu1 + 2‘11_1(0)61;2) U-2DL

T (3q1_1(0) — 4417(0)g22(0) + 46]2_2(0)2) v+ 861_3(0)vi]



Topological type of non-trivial fixed points

We have at the branch of non-trivial fixed points

det DP(y)
trace DP(y)

1 -
)

B d2y2 - O(yg)a

-tay” 4+ O(y°).

and, surprisingly, we get that|ds — to = 8k¢.



; det Nelmar Sacker

Topological type of non-trivial fixed points

We have at the branch of non-trivial fixed points

det DP(y)
trace DP(y)

and, surprisingly, we get that

N /
.5 Stable foci /’
3 d_q—r'l’ﬂ\l - trace
1 \ 5
Saddle-node

).5

1+ oy + day® + O(y°),
2+ oy + tay” + O(y?).
dg — tz — 8/‘%0.

Recall that we have y < 0 and small in absolute value.
Stablhty requires o > 0 and ko > 0. Furthermore, we

ko < 0— SADDLE

0.2

0 < ke < > NODE

2

ke > >» FOCUS

32



Theorem C Assume in system (1) that v; < 0, v_ <0
with v_v, —1 = 0 and that the two conditions o # 0 and
ks 7= 0 hold. By moving v_ and using the bifurcation
parameter € = v_vy; — 1, one crossing periodic orbit
bifurcates from the origin for kg - € > 0 small.

The bifurcating periodic orbit is stable whenever o > 0
and kg > 0.

The topological type of the corresponding fixed point
for the Poincaré map is saddle, node or focus depending
on whether kg < 0, 0 < Kg < 02/32 or Kg > 02/32,
respectively.

e=vyv_—1=0



Computing the return maps

To compute the return map P, we write

x(7) = e Txq +/ e (T vt s,
0

where i . o L
£ -1 0 0 0

AT =gt gf gf|, xo=|y|, vIi=]1

_hfg h; hj_ 20 U4

being yo < 0. In practice, we take

T + 7 +12 T +13
x(7T) = Xg vl 2A 6(A) 24(A) M

where M = ATxg + vT and I is the identity matrix of order 3.




From the first component we can determine an expression for the time
7+ = T4 (Yo, 20) such that x(71) = 0. The third order polynomial ap-
proximation is given by

7+ (Yo, 20) = a10Yo + a201y§ + a11Yozo + asoyg + C121?J§ZO - alZyOng

with
10 = —2,
2 + + +
ao0 = g(fl + g9 — 293 U+)7
a1 = 295,

2
G20 = §(ffr +95 — 295 V),

2

-3 (2(f1 +93)* —3(fi7g5 —g3hy +97) —
—(5f] + 59; -+ 3h§f)93+?f+ -+ 8(9§FU+)Q) ,

a12 = —2(g3 )7,

g3 Bg5vy — f1 — g3 —h3).

Q
W
S

|

O-'le-lk

as1 —



The half-return map (y1, 21) = Py (yo, 20) satisfies

where

—>
—>

v

v

Y1 = —Yo + C]Ey% + 3/0(011590 + 0123/020) +O0(4),
Z1 = —204Y0 + 20 + 90(921290 T QQQZO) T yO(Cg_ly(% + ngono T 65“323) + 0(4),

9
qf, = §(f1++92+ +g3v1),

a3y = —2(h3 — g3vt),

i =vilah —afa) = 5 (1 + 05 — 200y +3h3) v

ch = vl — (@) =~ U + 05+ U+ 0f + 305 vy — Agfvs)?].
Cla = —g (fi +99 +295v1 —hi) g3,

2
31 = -3 {3(h + fihd —h3hd)+ [2(f1 +93)> —3(fiT 95 + 9 — 93 hg )+
+6h3 (fi + 93 +h3)| v + 595 (ff7 + 95 + 3h3 )vi +8(g5 ) v

ng = U+(C12 2023) T QQQ(QQQ C]11)/2 —
2
=5 [hg (f7 + 93 +3h) — 205 (£ + 95 +5h)vi ] +4(g5v4)?,

cas =295 (hf — gfvy) = —93 gy



Analogously, we can determine the half-return map (y2, 22) = P~ (yo, 20), getting

where

—

—>
—>

Y2 = Yo — 2v_20 + 20(q11Y0 + ¢1220) + 20(c11 Y5 + c1aY020 + (31_3Z8) + O(4)

22 = —20 + a2y + 20(Cany020 + C3325) + O(4),

411 = — (92— o ]’L2_’U_),

_ _ 2, . _ _ _
QQ:U—(Q22_Q11):§(f1 + hg —2h2v_—|—392)v_,

2
G5 = 5 (fr +hg +hyv),

ci1 = 2hy (95 —hyv_) = —hjy qqy,
Clo = V_ (o — 2¢17) + q11(q17 — 422)/2 =
2 . _ o _ _ _
= 3 [92 (f1 + hg +392) 2h (fl + hz + 59, )U—} +4(h2 U—)za
_ 2 _ o L _ _ _ L L
Ci3 = 5{3(91 —J195 +9293) — [Q(fl "‘h3)2‘|‘3(h1 +hy g3 — f1 by )+
+6g5 (fi +92 +h3)] +5hy (fi + 395 + hy )v2 —8(hy )?v2 |,
_ 2 , . _ _ N
C22 = 73 (fi =92 +2hyv_ +h3)hy,
_ _ _ 2 _ _ R _ _ _
Coz = —U—-Cyo (%2)2 = 5 [Q(fl + hg )2 + hy (f1 + 395 + hs Ju_ — 4(h2 U—)Q}



Examples & Applications



A multi-parametric example

3.
|

—Y
1
ay + bz + vy

. .
|

a <0
b<0

Ty ={(z,y,2) eR*: z =
T_ = {(z,y,2) ER’: z =

=
|
N

|
-




A multi-parametric example

Saddle

v_vy > 1

Bifurcation set to be completed.

We have for this example

kg = avy — b,
o = —2b,
a + bvy

= b
e 3”0_|_

a <0
b<0

See the preprint by A. Algaba, E. Freire, E. Gamero and C. Garcia,
Bifurcation analysis of planar nilpotent reversible systems.



Electronic converters

* Electronic Power converters are Switching-Mode Power
Supplies (SMPS).

« Basically, they are built using semiconductor switches
(diodes, transistors) and energy storage elements
(inductors, capacitors)

 Examples: Rectifiers AC-DC, inverters DC-AC, DC-DC
converters (buck, boost, buck-boost)

 Their mathematical models commonly lead to non-
smooth dynamical systems



DC-DC converters
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The BOOST converter

il

* The value of g stands for a controlled switch

* when 41 is turned ON - current in L increases and energy is stored in it

* when 41 is turned OFF - the stored energy in L is dropped and the polarity
of the L voltage changes so that it adds to the input voltage

The goal is to get V,,+ > E




The BOOST converter

The model of the system is given by

dir,

Ld—:Vi — Tl — U - Vg

t (Vin:E)
C’dvc:u-i _

dt YR

where v. > 0 is the capacitor voltage, 7y, > 0 is the inductor current and
u € {0,1} is the control action. Input voltage is assigned as Vj,, rr is the
equivalent series resistance of the inductor, R is the resistive load, C' and L are
the capacitor and inductor, respectively.



The BOOST converter

To analyze the model, the system is normalized

(ir,ve) = (Vm\/gaf,‘/my) and t =7V LC;

and new parameters are taken, namely

C 1 |/ L
b=rr\/— and a= —1/—:

L RV C’

so that the boost converter model in dimensionless normal form is

r=1—br—u-y

j=u-x—ay.

for x,y > 0, u=40,1}, b >0, and a > 0.



The strategy at the BOOST converter

1 -Frequency variable Control
' : -Frequency constant Control
~ . using PWM (Pulse-Width Modulation)




Control of the Boost converter

We want to regulate the output voltage to a desired value y =
ve/Vin = yr > 1, ensuring robustness under parameter variation
of a, produced by load changes in R.
A washout filter is used: the inductor current  can be filtered
to get a new signal xr by means of a washout filter given by the
transfer function

Xr(s) S w

p— p— :1
Gr(s) X(s) s+w s+w’

where w is the reciprocal of the filter constant and xz g is the
filter output.

A differential equation is added, Z = w(z — 2), where z is a new
state satistying the output equation zp =z — z.



Control of the Boost converter

L

L /
F/?\q/\/\m__% >
+ S el
<_>Vin —I C VC
A |
_ SMC-Washout v
' 5 Controller ] Q:




Control of the Boost converter

The SMC strategy consists in the choice of

Y ={x=(z,9,2) €R’: h(x) =y — yr + k(z — 2) = 0}

as the switching boundary, where we want to\be located the

pseudo-equilibrium point.

We use the vector fields defined by

1—bx—vy
FT(x)=| z—ay

w(r — 2)

and F~ (x) =

for h(x) > 0 and h(x) < 0, respectively.

In what follows, we assume for simplicity b = 0 (ideal induc-

1 —bxr |

—ay
w(r — 2)

tance), w = 1 and y, = 2 (doubling the voltage).

Control parameter




Control of the Boost converter

Therefore, we work with

S={x=(z,y,2) R :h(x)=y -2+ k(z — 2) =0}

and _ _ _ >
1y 1
F'(x)= |z —ay| and F~(x)= | —ay |,
for h(x) > 0 and h(x) < 0, respectively.

We need to compute Vh - F* on ¥, and look for ¥,;, namely

Vh-F*(x)|, = [k, 1,

and

Vh-F~(x)|y. = [k, 1,—k] | —ay

—k] |z —ay

1y

r — Z

r— =z

= k(l—y)+z—ay—k(z—=2) = z+(1—a—k)y+k—2 < 0,

= k—ay—k(z—2) = (1—a)y+k—2 > 0.



TS-point in a DC-DC Boost converter

I'he tangency lines are

T ={xeX: 1—-a)y+k—2=0}
T, =4{xe¥X: x24+(1—-a—-k)y+k—2=0}

The double tangency point occurs where the tangency lines in-
tersect transversally, i.e., at the point X = (ky, v, 2), with

k=2 1Y

ST a1 |
1+ k%) — 2 1 ol

2:( : k)y | SR

M

where we assume a # 1.

To have y > 0, we will consider sign(k — 2) = sign(a — 1).



TS-point in a DC-DC Boost converter




TS-point in a DC-DC Boost converter

The pseudo-equilibrium point is at (z,y, z2) = (4a, 2,4a) to be in
dias only it k > 2a. Thus, we must expect to have the compound
bifurcation for k£ = 2a.

First, we need to check the conditions (H2) to have a T'S-point.
Computations lead to the two conditions

k— 3+ V17 — 34k + 37k% — 20k3 + 4k*

k>2, 1
> 2 <a< D)

Assuming these inequalities, we put the system in the canonical
form and compute the critical coefficients.



We obtain for the new coeflicients

.,  1—-a*(k—2)—a(3—-3k+k?) . ~ (a—k)(k—-2)
T (a — 1wiw_ T Wiw_ ’
along with
_ _ _ _ 1 _ 1
go =hy =hy =0, 91 :_kw_w+’ /1 — T
. ak+a(l—-k+k%) -1 - _ O . k=1
J3 = (a — 1)kw, ’ S w ] S I
g+:k2+(a—2)k—|—1 g+:_k2+(a—1)k—|—1 e+ a—1
! k2wi ’ : kw_ o kw_wy’
n (k* +(a —2)k +2 — a)w_ . a—1 . k-1
S (a — 1)w? 2 S w_ hs = wy
T — +
where the two conditions
k—1)3 + (k- — (k — 2)a?
w? =a(k—2)>0, wi= ( )7+ (k= 3)a - ( Ja > 0,

a—1

are guaranteed from Hypothesis (H2).



TS-point in a DC-DC Boost converter

The bifurcation curve in the (a, k)-plane of parameters turns

out to be
v_vy —1=(2a—k)y =0,

l.e.,
k = 2a.
Moreover, we have
2a(1 — 1 —a)* + 5a’
Vi | gy = o a)<0 and Ve |\tgy = ( a)” + 5a < 0
—4a W W_ —4d W4 W_

for all @ > 1. The sliding bifurcation is supercritical, since

2
'%S}k:Qa — 3 > 0.
((1 —a)? + 5a?)>




TS-point in a DC-DC Boost converter

Regarding the crossing bifurcation, we obtain

2(5 — 4a + 16a* + 24a°)
o k=2a — 3 > O’
3(1 — 2a 4 6a?)>

and
2

= > 0,
"C T 3((1 = a)? 1 5a2)?
so that the bifturcating periodic orbit for £ < 2a is of stable
node type.




Simulation results

33=k>2a=3



Simulation results




Simulation results

2.5 =k < 2a=3



Undesirable oscillation observed in laboratory
due to the TS-point in the DC-DC Boost converter




Conclusions

The TS compound bifurcation has been characterized for piecewise
linear systems, and a procedure for computing the essential
coefficients has been provided.

Several examples have been shown, and in particular the bifurcation
is detected in DC-DC converters under SMC strategy with a
washout filter.

A codimension-two unfolding is still needed, gaining information on
secondary bifurcation curves.

A question to solve: Can this study with linear pieces serve as a
normal form for nonlinear vector fields!?

Thank you for your attention!



