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Introduction

We consider 3D piecewise linear Filippov differential 
systems with a separation plane, having a two-fold point 
with invisible tangencies, that is, the so-called Teixeira 
singularity (TS-point, for short). 

For some parameter values this singularity undergoes a 
compound bifurcation: there appears a sliding bifurcation 
involving a pseudo-equilibrium point and, simultaneously, 
a bifurcation associated to the birth of a crossing limit 
cycle. 

After determining a generic canonical form, we show 
how to characterize such a compound bifurcation.

Our motivation comes from the natural appearance of 
TS-points in the control of Boost converters. 
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ż = �11a2x� y + 1

⌃as = {(x, y, z) 2 R3 : x = 0, y > 0 and z > 0}
⌃rs = {(x, y, z) 2 R3 : x = 0, y < 0 and z < 0}
⌃�

c = {(x, y, z) 2 R3 : x = 0, y > 0 and z < 0}
⌃+

c = {(x, y, z) 2 R3 : x = 0, y < 0 and z > 0}

⌃as

⌃rs

⌃+
c

⌃�
c

A non-trivial yet manageable example



8
<

:
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The crossing dynamics bifurcation (periodic orbits?)
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The integration of the (-) vector field is much more involved but

the choice of stepped eigenvalues allows to express solutions in

an algebraic way.
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We can compute in terms of u, the de-

terminant and trace of the derivative

DP (y0, z0) = DP�1
� � DP+(y0, z0) to

check the stability of the periodic orbit.
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Such a global control of the compound bifurcation for 
the Teixeira singularity is rather unusual: in what follows, 
we show how it is possible to characterize locally this 
bifurcation for discontinuous linear systems.
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The canonical form for DPWLS with a TS-point
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The sliding vector field associated to system (1) is

Fs
(0, y, z) =

1

y + z

2

4
0

v�y + z + g�2 y
2
+ (g+2 + g�3 )yz + g+3 z

2

y + v+z + h�
2 y

2
+ (h+

2 + h�
3 )yz + h+

3 z
2

3

5 .

The sliding dynamics bifurcation

We work with the desingularized system

˙

x = F

s
d(0, y, z) :=

2

4
0

v�y + z + g�2 y
2
+ (g+2 + g�3 )yz + g+3 z

2

y + v+z + h�
2 y

2
+ (h+

2 + h�
3 )yz + h+

3 z
2

3

5
(2)



The sliding dynamics bifurcation

Pseudo-equilibrium points come from solving the two equations

v�y + z +
⇥
y z

⇤
G


y
z

�
= 0,

y + v+z +
⇥
y z

⇤
H


y
z

�
= 0,

where

G =


g�2 g�3
g+2 g+3

�
and H =


h�
2 h�

3

h+
2 h+

3

�
.



Pseudo-equilibrium points come from solving the two equations

v�y + z +
⇥
y z

⇤
G


y
z

�
= 0,

y + v+z +
⇥
y z

⇤
H


y
z

�
= 0,

where

G =


g�2 g�3
g+2 g+3

�
and H =


h�
2 h�

3

h+
2 h+

3

�
.

J(0, 0) =


v� 1
1 v+

�

The sliding dynamics bifurcation



Pseudo-equilibrium points come from solving the two equations

v�y + z +
⇥
y z

⇤
G


y
z

�
= 0,

y + v+z +
⇥
y z

⇤
H


y
z

�
= 0,

where

G =


g�2 g�3
g+2 g+3

�
and H =


h�
2 h�

3

h+
2 h+

3

�
.

J(0, 0) =


v� 1
1 v+

�

The sliding dynamics bifurcation

Apart from the origin, we can have another non-trivial emanating

branch for v�v+ = 1 (transcritical bifurcation). We assume all

parameters fixed excepting

v� = v�(") :=
1 + "

v+



Pseudo-equilibrium points come from solving the two equations

v�y + z +
⇥
y z

⇤
G


y
z

�
= 0,

y + v+z +
⇥
y z

⇤
H


y
z

�
= 0,

where

G =


g�2 g�3
g+2 g+3

�
and H =


h�
2 h�

3

h+
2 h+

3

�
.

J(0, 0) =


v� 1
1 v+

�

The sliding dynamics bifurcation

(v+v� � 1)| {z }
"

y +
⇥
y z

⇤
(v+G�H)


y
z

�
= 0,

y + v+z +
⇥
y z

⇤
H


y
z

�
= 0.



We can use the equivalent system of equations
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The sliding dynamics bifurcation
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⌃rs

P+

✓
0
z

�◆
=


0
z

�
; P�

✓
y
0

�◆
=


y
0

�

P+

✓
y
z

◆
= P�1

�

✓
y
z

◆
= P�

✓
y
z

◆

Involution property

Invariance of the tangency lines



The structure of return maps

P�

✓
y
z

◆
=


1 �2v�
0 �1

� 
y
z

�
+ z


q�11y + q�12z
q�21y + q�22z

�
+ z


c�11y

2 + c�12yz + c�13z
2

c�21y
2 + c�22yz + c�23z

2

�
+O(4)

P+

✓
y
z

◆
=


�1 0

�2v+ 1

� 
y
z

�
+ y


q+11y + q+12z
q+21y + q+22z

�
+ y


c+11y

2 + c+12yz + c+13z
2

c+21y
2 + c+22yz + c+23z

2

�
+O(4)



The structure of return maps

P�

✓
y
z

◆
=


1 �2v�
0 �1

� 
y
z

�
+ z


q�11y + q�12z
q�21y + q�22z

�
+ z


c�11y

2 + c�12yz + c�13z
2

c�21y
2 + c�22yz + c�23z

2

�
+O(4)

P+

✓
y
z

◆
=


�1 0

�2v+ 1

� 
y
z

�
+ y


q+11y + q+12z
q+21y + q+22z

�
+ y


c+11y

2 + c+12yz + c+13z
2

c+21y
2 + c+22yz + c+23z

2

�
+O(4)

Involution property

q+12 = 0;
q+21 = v+(q

+
11 � q+22);

c+11 = �v+c
+
12 � (q+11)

2;
c+13 = 0;
c+22 = v+(c

+
12 � 2c+23) + q+22(q

+
22 � q+11)/2.



The structure of return maps

P�

✓
y
z

◆
=


1 �2v�
0 �1

� 
y
z

�
+ z


q�11y + q�12z
q�21y + q�22z

�
+ z


c�11y

2 + c�12yz + c�13z
2

c�21y
2 + c�22yz + c�23z

2

�
+O(4)

P+

✓
y
z

◆
=


�1 0

�2v+ 1

� 
y
z

�
+ y


q+11y + q+12z
q+21y + q+22z

�
+ y


c+11y

2 + c+12yz + c+13z
2

c+21y
2 + c+22yz + c+23z

2

�
+O(4)

Involution property

Involution property

q�21 = 0;
q�12 = v�(q

�
22 � q�11);

c�23 = �v�c
�
22 � (q�22)

2;
c�21 = 0;
c�12 = v�(c

�
22 � 2c�11) + q�11(q

�
11 � q�22)/2.

q+12 = 0;
q+21 = v+(q

+
11 � q+22);

c+11 = �v+c
+
12 � (q+11)

2;
c+13 = 0;
c+22 = v+(c

+
12 � 2c+23) + q+22(q

+
22 � q+11)/2.



Looking for non-trivial fixed points

We impose the equality P+(y, z) = P�1
� (y, z), to obtain

0 = �2y + 2v�z + q+11y
2 � q�11yz � q�12z

2
+ c+11y

3
+ (c+12 � c�11)y

2z � c�12yz
2 � c�13z

3
+O(4),

0 = �2v+y + 2z + q+21y
2
+ q+22yz � q�22z

2
+ c+21y

3
+ c+22y

2z + (c+23 � c�22)yz
2 � c�23z

3
+O(4).

Again, we can have a bifurcation at v+v� = 1 so that we do

a new bifurcation analysis by assuming all parameters fixed,

excepting v�, and take

v� =

1 + "

v+

Note that, from the second equation and the implicit function

theorem, we can assume the existence of a function p(y, ") such
that

z = y · p(y, "), with p(0, 0) = v+.
We need v+ < 0



We get z = y · p(y, ") with

p(y, ") = v+ �
�
q+11 � q�22(")v+

� y
2
+

⇥
�2c+21 + q+22(2q

+
11 � q+22)v++

+
�
2c�22(")� 2c+12 + 2c+23 � 2q�22(")q

+
11 � q�22(")q

+
22

�
v2+ � 2c�22(")v�(")v

3
+

⇤ y2

4
+ . . .

After substituting z in the first equation, we can desingularize it to get

0 = 2"�
�
q+11 � q�11(")v+

�
"y + P (")y2 + . . .

with

P (") = � 1

2v+

⇥
2c+21 +

�
2(q+11)

2 � 2q+11q
+
22 + (q+22)

2
�
v++

+

�
�2c�11(") + 2c�22(") + 2c+12 � 2c+23 + q�11(")q

+
11 + q�22(")q

+
22

�
v2++

+

�
q�11(")

2 � 2q�11(")q
�
22(") + 2q�22(")

2
�
v3+ + 2c�13(")v

4
+ +O(")

⇤

Looking for non-trivial fixed points



Looking for non-trivial fixed points

y

z

⌃as⌃+
c

⌃�
c⌃rs

Clearly, it is more convenient to parameterize the emanating branch in terms

of y, so that we get the expansion

" = C · y2 +O(y3),

where the criticality coe�cient is

C =

1

4v+

⇥
2c+21 +

�
2(q+11)

2 � 2q+11q
+
22 + (q+22)

2
�
v++

+

�
�2c�11(0) + 2c�22(0) + 2c+12 � 2c+23 + q�11(0)q

+
11 + q�22(0)q

+
22

�
v2++

+

�
q�11(0)

2 � 2q�11(0)q
�
22(0) + 2q�22(0)

2
�
v3+ + 2c�13(0)v

4
+

⇤

In short, depending on the sign of C we have a subcritical or supercritical

bifurcation of non-trivial fixed points with

z(y) = v+ · y +O(y2),

"(y) = C · y2 +O(y3).



Topological type of non-trivial fixed points

Just computing the derivatives of the Poincaré half-return maps,

and evaluating them at the branch of non-trivial fixed points,

we get DP (y) = D (P� � P+) (y, z(y)) and the expansions for

its determinant ant trace, namely

detDP (y) = 1 + d1y + d2y
2
+O(y3),

traceDP (y) = 2 + t1y + t2y
2
+O(y3).

It turns out that t1 = d1. When this common value vanishes, we have a degeneracy that should

require much more long computations. We define � := t1 = d1, and the computations give

� = �2q+11 + q+22 +
�
2q�22(0)� q�11(0)

�
v+,

d2 =

1

2

h
6(q+11)

2 � 5q+11
�
q+22 � q�11(0)v+ + 2q�22(0)v+

�
+

�
q+22 � q�11(0)v+ + 2q�22(0)v+

�2i
,

t2 = � 1

2v+

⇥
8c+21 +

�
2(q+11)

2 � 3q+11q
+
22 + 3(q+22)

2
�
v++

+

�
�8c�11(0) + 8c�22(0) + 8c+12 � 8c+23 � q�11(0)q

+
11 + 10q�22(0)q

+
11 + 2q�11(0)q

+
22

�
v2++

+

�
3q�11(0)

2 � 4q�11(0)q
�
22(0) + 4q�22(0)

2
�
v3+ + 8c�13(0)v

4
+

⇤



Topological type of non-trivial fixed points

We have at the branch of non-trivial fixed points

detDP (y) = 1 + �y + d2y
2
+O(y3),

traceDP (y) = 2 + �y + t2y
2
+O(y3).

and, surprisingly, we get that d2 � t2 = 8C .



Topological type of non-trivial fixed points

We have at the branch of non-trivial fixed points

detDP (y) = 1 + �y + d2y
2
+O(y3),

traceDP (y) = 2 + �y + t2y
2
+O(y3).

and, surprisingly, we get that d2 � t2 = 8C .

Recall that we have y < 0 and small in absolute value.
Stability requires � > 0 and C > 0. Furthermore, we
get

C < 0 �! SADDLE

0 < C <
�2

32
�! NODE

C >
�2

32
�! FOCUS

-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

1.5

trace

det

Saddle-node

Neimar-Sacker

Stable foci



Theorem C Assume in system (1) that v+ < 0, v� < 0

with v�v+�1 = 0 and that the two conditions � 6= 0 and

S 6= 0 hold. By moving v� and using the bifurcation

parameter " = v�v+ � 1, one crossing periodic orbit

bifurcates from the origin for S · " > 0 small.

The bifurcating periodic orbit is stable whenever � > 0

and S > 0.

The topological type of the corresponding fixed point

for the Poincaré map is saddle, node or focus depending

on whether S < 0, 0 < S < �2/32 or S > �2/32,
respectively.

v+

v�

" = v+v� � 1 = 0

" < 0

" > 0



To compute the return map P+ we write

x(⌧) = eA
+
⌧

x0 +

Z
⌧

0
eA

+(⌧�s)
v

+ds,

where

A+
=

2

4
f+
x

�1 0

g+
x

g+
y

g+
z

h+
x

h+
y

h+
z

3

5 , x0 =

2

4
0

y0
z0

3

5 , v

+
=

2

4
0

1

v+

3

5 ,

being y0 < 0. In practice, we take

x(⌧) = x0 +

✓
⌧I +

⌧2

2

A+
+

⌧3

6

(A+
)

2
+

⌧4

24

(A+
)

3

◆
M +O(⌧5)

where M = A+
x0 + v

+
and I is the identity matrix of order 3.

Computing the return maps



From the first component we can determine an expression for the time

⌧+ = ⌧+(y0, z0) such that x(⌧+) = 0. The third order polynomial ap-

proximation is given by

⌧+(y0, z0) = a10y0 + a20y
2
0 + a11y0z0 + a30y

3
0 + a21y

2
0z0 + a12y0z

2
0 ,

with

a10 = �2,

a20 =

2

3

(f

+
1 + g

+
2 � 2g

+
3 v+),

a11 = 2g

+
3 ,

a20 =

2

3

(f

+
1 + g

+
2 � 2g

+
3 v+),

a30 = �2

9

�
2(f

+
1 + g

+
2 )

2 � 3(f

+
1 g

+
2 � g

+
3 h

+
2 + g

+
1 ) �

�(5f

+
1 + 5g

+
2 + 3h

+
3 )g

+
3 v+ + 8(g

+
3 v+)

2
�
,

a12 = �2(g

+
3 )

2
,

a21 =

4

3

g

+
3 (3g

+
3 v+ � f

+
1 � g

+
2 � h

+
3 ).



The half-return map (y1, z1) = P+(y0, z0) satisfies

y1 = �y0 + q+11y
2
0 + y0(c

+
11y

2
0 + c+12y0z0) +O(4),

z1 = �2v+y0 + z0 + y0(q
+
21y0 + q+22z0) + y0(c

+
21y

2
0 + c+22y0z0 + c+23z

2
0) +O(4),

where

q+11 =
2

3

�
f+
1 + g+2 + g+3 v+

�
,

q+22 = �2(h+
3 � g+3 v+),

q+21 = v+(q
+
11 � q+22) =

2

3

�
f+
1 + g+2 � 2g+3 v+ + 3h+

3

�
v+,

c+11 = �v+c
+
12 � (q+11)

2 = �2

9

⇥
2(f+

1 + g+2 )
2 + (f+

1 + g+2 + 3h+
3 )g

+
3 v+ � 4(g+3 v+)

2
⇤
,

c+12 = �2

3

�
f+
1 + g+2 + 2g+3 v+ � h+

3

�
g+3 ,

c+21 = �2

9

�
3(h+

1 + f+
1 h+

2 � h+
2 h

+
3 ) +

⇥
2(f+

1 + g+2 )
2 � 3(f+

1 g+2 + g+1 � g+3 h
+
2 )+

+6h+
3 (f

+
1 + g+2 + h+

3 )
⇤
v+ + 5g+3 (f

+
1 + g+2 + 3h+

3 )v
2
+ + 8(g+3 )

2v3+
 
,

c+22 = v+(c
+
12 � 2c+23) + q+22(q

+
22 � q+11)/2 =

=
2

3

⇥
h+
3 (f

+
1 + g+2 + 3h+

3 )� 2g+3 (f
+
1 + g+2 + 5h+

3 )v+
⇤
+ 4(g+3 v+)

2,

c+23 = 2g+3 (h
+
3 � g+3 v+) = �g+3 q

+
22.



Analogously, we can determine the half-return map (y2, z2) = P�1
� (y0, z0), getting

y2 = y0 � 2v�z0 + z0(q
�
11y0 + q�12z0) + z0(c

�
11y

2
0 + c�12y0z0 + c�13z

2
0) +O(4)

z2 = �z0 + q�22z
2
0 + z0(c

�
22y0z0 + c�23z

2
0) +O(4),

where

q�11 = �2(g�2 � h�
2 v�),

q�12 = v�(q
�
22 � q�11) =

2

3

�
f�
1 + h�

3 � 2h�
2 v� + 3g�2

�
v�,

q�22 =

2

3

�
f�
1 + h�

3 + h�
2 v�

�
,

c�11 = 2h�
2 (g

�
2 � h�

2 v�) = �h�
2 q

�
11,

c�12 = v�(c
�
22 � 2c�11) + q�11(q

�
11 � q�22)/2 =

=

2

3

⇥
g�2 (f

�
1 + h�

3 + 3g�2 )� 2h�
2 (f

�
1 + h�

3 + 5g�2 )v�
⇤
+ 4(h�

2 v�)
2,

c�13 =

2

9

�
3(g�1 � f�

1 g�3 + g�2 g
�
3 )�

⇥
2(f�

1 + h�
3 )

2
+ 3(h�

1 + h�
2 g

�
3 � f�

1 h�
3 )+

+6g�2 (f
�
1 + g�2 + h�

3 )
⇤
+ 5h�

2 (f
�
1 + 3g�2 + h�

3 )v
2
� � 8(h�

2 )
2v3�

 
,

c�22 = �2

3

�
f�
1 � g�2 + 2h�

2 v� + h�
3

�
h�
2 ,

c�23 = �v�c
�
22 � (q�22)

2
= �2

9

⇥
2(f�

1 + h�
3 )

2
+ h�

2 (f
�
1 + 3g�2 + h�

3 )v� � 4(h�
2 v�)

2
⇤
.



Examples & Applications



x = 0

T+ = {(x, y, z) 2 R3 : x = y = 0}
T� = {(x, y, z) 2 R3 : x = z = 0}

z

y

A multi-parametric example

8
<

:

ẋ = �y

ẏ = 1
ż = ay + bz + v+

8
<

:

ẋ = z

ẏ = v�
ż = 1

a < 0

b < 0



We have for this example

S = av+ � b,

� = �2b,

C = b
a+ bv+
3v+

.

−

a

b

−

b

a

−

8a

5b

−

5b

8a

0

v
−

v+ < 1

v
−

v+

v
−

v+ = 1

v
−

v+ > 1

Node

Focus

Saddle

a < 0

b < 0

A multi-parametric example

Bifurcation set to be completed.
See the preprint by A. Algaba, E. Freire, E. Gamero and C. García, 
Bifurcation analysis of planar nilpotent reversible systems.



•  Electronic Power converters are Switching-Mode Power 
Supplies (SMPS).  

•  Basically, they are built using semiconductor switches 
(diodes, transistors) and energy storage elements 
(inductors, capacitors)  

•  Examples: Rectifiers AC-DC, inverters DC-AC, DC-DC 
converters (buck, boost, buck-boost) 

•   Their mathematical models commonly lead to non-
smooth dynamical systems 

Electronic converters



Buck (step-down) 

Buck-Boost (step-
up or step-down) 

Multi-Buck (CPU) 

Boost (step-up)

DC-DC converters



•  The value of     stands for a controlled switch 

•  when      is turned ON à current in L increases and energy is stored in it 

•  when      is turned OFF à the stored energy in L is dropped and the polarity 
of the L voltage changes so that it adds to the input voltage 

The goal is to get V
out

> E

The BOOST converter



The model of the system is given by

L
diL
dt

= Vin � rLiL � u · vc

C
dvc
dt

= u · iL � vc
R

where vc > 0 is the capacitor voltage, iL > 0 is the inductor current and

u 2 {0, 1} is the control action. Input voltage is assigned as Vin, rL is the

equivalent series resistance of the inductor, R is the resistive load, C and L are

the capacitor and inductor, respectively.

(Vin = E)

The BOOST converter



To analyze the model, the system is normalized

(iL, vc) =

 
Vin

r
C

L

x, Viny

!
and t = ⌧

p
LC;

and new parameters are taken, namely

b = rL

r
C

L

and a =

1

R

r
L

C

;

so that the boost converter model in dimensionless normal form is

ẋ = 1� bx� u · y
ẏ = u · x� ay,

for x, y > 0, u = {0, 1}, b � 0, and a > 0.

The BOOST converter



⎩
⎨
⎧

−=

−−=

yaxy
yxbx

E
!
! 1

0
⎩
⎨
⎧

−=

−=

yay
xbx

E
!
! 1

1

-Frequency variable Control 
-Frequency constant Control 
 using PWM (Pulse-Width Modulation) 

The strategy at the BOOST converter



We want to regulate the output voltage to a desired value y =

vc/Vin = yr > 1, ensuring robustness under parameter variation

of a, produced by load changes in R.

A washout filter is used: the inductor current x can be filtered

to get a new signal xF by means of a washout filter given by the

transfer function

GF (s) =
XF (s)

X(s)

=

s

s+ w

= 1� w

s+ w

,

where w is the reciprocal of the filter constant and xF is the

filter output.

A di↵erential equation is added, ż = w(x� z), where z is a new

state satisfying the output equation xF = x� z.

Control of the Boost converter



  

V
C

i
L

V
in

Lr
L

C
+

SMC-Washout

Controller 
i
L

u

V
C

RS

Control of the Boost converter



The SMC strategy consists in the choice of

⌃ = {x = (x, y, z) 2 R3
: h(x) = y � yr + k(x� z) = 0}

as the switching boundary, where we want to be located the

pseudo-equilibrium point.

We use the vector fields defined by

F

+
(x) =

2

4
1� bx� y

x� ay

w(x� z)

3

5
and F

�
(x) =

2

4
1� bx

�ay

w(x� z)

3

5
,

for h(x) > 0 and h(x) < 0, respectively.

In what follows, we assume for simplicity b = 0 (ideal induc-

tance), w = 1 and yr = 2 (doubling the voltage).

Control parameter

Control of the Boost converter



Therefore, we work with

⌃ = {x = (x, y, z) 2 R3
: h(x) = y � 2 + k(x� z) = 0}

and

F

+
(x) =

2

4
1� y

x� ay

x� z

3

5
and F

�
(x) =

2

4
1

�ay

x� z

3

5
,

for h(x) > 0 and h(x) < 0, respectively.

Control parameter

Load parameter

We need to compute rh · F±
on ⌃, and look for ⌃as, namely

rh · F+
(x)

��
⌃
= [k, 1,�k]

2

4
1� y

x� ay

x� z

3

5
= k(1�y)+x�ay�k(x�z) = x+(1�a�k)y+k�2 < 0,

and

rh · F�
(x)

��
⌃
= [k, 1,�k]

2

4
1

�ay

x� z

3

5
= k�ay�k(x�z) = (1�a)y+k�2 > 0.

Control of the Boost converter



The tangency lines are

T� = {x 2 ⌃ : (1� a)y + k � 2 = 0},
T+ = {x 2 ⌃ : x+ (1� a� k)y + k � 2 = 0}.

The double tangency point occurs where the tangency lines in-

tersect transversally, i.e., at the point

ˆ

x = (kŷ, ŷ, ẑ), with

ŷ =

k � 2

a� 1

,

ẑ =

(1 + k

2
)ŷ � 2

k

.

where we assume a 6= 1.

To have ŷ > 0, we will consider sign(k � 2) = sign(a� 1).

T�

⌃as

y

x

T+

TS-point in a DC-DC Boost converter



T+
y

x̃

x̂
T
−

x = ay2

Σ−

c Σrs

Σas

x0

k−2

a+k−1

Σ+
c

k−2

a−1

yr = 2

−(k − 2)

TS-point in a DC-DC Boost converter



The pseudo-equilibrium point is at (x̃, ỹ, z̃) = (4a, 2, 4a) to be in

⌃as only if k > 2a. Thus, we must expect to have the compound

bifurcation for k = 2a.

Assuming these inequalities, we put the system in the canonical

form and compute the critical coe�cients.

First, we need to check the conditions (H2) to have a TS-point.

Computations lead to the two conditions

k > 2, 1 < a <
k � 3 +

p
17� 34k + 37k2 � 20k3 + 4k4

2(k � 2)

.
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We obtain for the new coe�cients

v� =
1� a2(k � 2)� a(3� 3k + k2)

(a� 1)!+!�
, v+ =

(a� k)(k � 2)

!+!�
,

along with

g�2 = h�
1 = h�

2 = 0, g�1 = � 1

k!�!+
, f�

1 = � 1

!�
,

g�3 =
a2k + a(1� k + k2)� 1

(a� 1)k!+
, h�

3 = � a

!�
, f+

1 = �k � 1

k!+
,

g+1 =
k2 + (a� 2)k + 1

k2!2
+

, g+2 = �k2 + (a� 1)k + 1

k!+
, h+

1 = � a� 1

k!�!+
,

g+3 = � (k2 + (a� 2)k + 2� a)!�
(a� 1)!2

+

, h+
2 =

a� 1

!�
, h+

3 =
k � 1

!+
,

where the two conditions

!2
� = a(k � 2) > 0, !2

+ =
(k � 1)3 + (k � 3)a� (k � 2)a2

a� 1
> 0,

are guaranteed from Hypothesis (H2).



The bifurcation curve in the (a, k)-plane of parameters turns

out to be

v�v+ � 1 = (2a� k)ŷ = 0,

i.e.,

k = 2a.

Moreover, we have

v+
��
k=2a

=

2a(1� a)

!+!�
< 0 and v�

��
k=2a

= � (1� a)2 + 5a2

!+!�
< 0

for all a > 1. The sliding bifurcation is supercritical, since

S

��
k=2a

=

2

((1� a)2 + 5a2)
3
2

> 0.
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Regarding the crossing bifurcation, we obtain

�
��
k=2a

=

2(5� 4a+ 16a2 + 24a3)

3(1� 2a+ 6a2)
3
2

> 0,

and

C =

2

3((1� a)2 + 5a2)2
> 0,

so that the bifurcating periodic orbit for k < 2a is of stable

node type.
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3.3 = k > 2a = 3

Simulation results



k = 2a = 3

Simulation results



2.5 = k < 2a = 3

Simulation results



Undesirable oscillation observed in laboratory 
due to the TS-point in the DC-DC Boost converter



Conclusions
• The TS compound bifurcation has been characterized for piecewise 

linear systems, and a procedure for computing the essential 
coefficients has been provided. 

• Several examples have been shown, and in particular the bifurcation 
is detected in DC-DC converters under SMC strategy with a 
washout filter.

• A codimension-two unfolding is still needed, gaining information on 
secondary bifurcation curves.

• A question to solve: Can this study with linear pieces serve as a 
normal form for nonlinear vector fields?

Thank you for your attention!


