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I This talk is about slow-fast systems{
ẋ = f (x , y , ε, λ)
ẏ = εg(x , y , ε, λ)

where ε > 0 is small, λ is some parameter.

I Mathematical foundations:
I Geometric singular perturbation Theory by Fenichel, Jones
I Desingularization by Dumortier, Roussarie
I Canards by Benoit et al
I Asymptotics by Eckhaus, Wasow, Ramis et al

I Motivation is 2-fold:
I Study of periodic orbits (Hilbert 16th problem)
I Applications to natural rhythms in biology, neurology, ecology,
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Type I vs type II excitation
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Changing the w -nullcline
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Slow-fast equations

{
w ′ = εg(w , v , ε, λ)
v ′ = f (w , v , ε, I )

(1)

A more specific neuronal model:

w ′ = ε(G (v)− w)

v ′ = v2(d − v)− w + I ,
(2)

with

G (v) =

{
cv , v ≤ vth

cv + e(v − vth)2, v > vth
(3)



Slow-fast analysis
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{
w ′ = 0
v ′ = v2(d − v)− w + I

{
w ′ = G (v)− w

0 = v2(d − v)− w + I

The critical manifold S is cubic shaped and given as a graph
{w = φI (v)}, i.e.

S = S−a ∪ F− ∪ Sr ∪ F+ ∪ S+
a ,
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{
w ′ = G (v)− w

0 = v2(d − v)− w + I

Along the w -nullcline g(w , v , 0, λ) = 0:

∂g
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6= 0 ,

∂g
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· ∂g
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≤ 0 .
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{
w ′ = 0
v ′ = v2(d − v)− w + I

{
w ′ = G (v)− w

0 = v2(d − v)− w + I

The system can have one, two or three equilibria on w = φI (v),
all of them located either on Sr or on S−a



Slow-fast analysis
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{
w ′ = 0
v ′ = v2(d − v)− w + I

{
w ′ = G (v)− w

0 = v2(d − v)− w + I

The fold point F+ = (w+, v+) is a regular jump point.



Assumption

Consider {
w ′ = εg(w , v , ε, λ)
v ′ = f (w , v , ε, I )

and define
G(v , I , λ) = g(φI (v), v , 0, λ).

For fixed (I , λ) = (Ibif, λbif), the fold point F− = (w−, v−) is a
singular contact point that undergoes a singular Bogdanov-Takens
bifurcation with respect to the parameters (I , λ):

G(v−, Ibif, λbif) = 0,
∂G
∂v

(v−, Ibif, λbif) = 0,
∂2G
∂v2

(v−, Ibif, λbif) > 0,

∂G
∂I

(v−, Ibif, λbif) 6= 0,
∂G
∂λ

(v−, Ibif, λbif) = 0,
∂2G
∂λ∂v

(v−, Ibif, λbif) 6= 0.

Besides the possible singular points near F− occurring in this
bifurcation, there are no other singular points on S−a .



Proposition

Under these assumptions, the family of vector fields can be locally
transformed in the following normal form near F−,

x ′ = ε
(
cy − σx − a + O(x2, y3, xy , εy2)

)
y ′ = y2 − x + βy3 + O(y4) ,

(4)

where σ = ±1, σc ≥ 0 and β 6= 0. The coefficients a, c and β can
be computed explicitly in terms of (I , λ, ε).

For system (2), the coefficients in the normal form are given by
c ≥ 0 and

a = dI , β = −1/d2, σ = 1, (5)
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(a) a = c = 0: singular SNIC
(b) a = 0, c > 0 below ccusp: slow-fast Hopf (truncated)
(c) a = 0, c = ccusp: slow-fast Hopf (truncated)
(d) a = 0, c > ccusp: slow-fast Hopf
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Theorem
For fixed 0 < c < ccusp and 0 < ε� 1 there exists an unstable
equilibrium on the middle branch Sr ,ε bounded away from the
lower fold F−. Furthermore, there exist functions

0 < asnpo(ε) < a`(ε) < as(ε) < ac(ε) < ah(ε) < a+sn(ε)

that all converge to zero in the singular limit ε→ 0 (except a+sn)
and for which the following holds:

1. For a+sn < a, the fold F− is of regular jump type and a large
stable relaxation cycle exists.

2. At a = a+sn, a saddle-node bifurcation of singular points on the
middle branch Sr ,ε in an O(c)-neighbourhood of F−; the large
relaxation cycle persists.

3. For ah < a < a+sn, the system has a saddle p+ and an unstable
focus/node p− on the middle branch Sr ,ε surrounded by the
large relaxation cycle. The unstable focus/node p− is closer
to the fold F−.



4. At a = ah, p− changes stability and a subcritical singular
Andronov-Hopf bifurcation takes place; the large relaxation
cycle persists.

5. For ac < a < ah, repelling small amplitude limit cycles appear
around the stable focus p−; the large relaxation cycle persists.

6. For as < a < ac , small jump-back canard cycles appear that
rapidly grow in amplitude (canard explosion); the large
relaxation cycle perturbs to a large-amplitude jump-forward
canard cycle.

7. At a = as , a small jump-back homoclinic loop of canard type,
issued from the saddle p+, appears together with a stable
large-amplitude canard cycle.

8. For a` < a < as , the small homoclinic loop breaks and only
the stable large-amplitude canard cycle persists.

9. At a = a`, a large-amplitude homoclinic loop of canard type,
issued from the saddle p+, appears together with the outer
large-amplitude cycle.

10. As a decreases from a`, large amplitude canard cycles appear
that grow in amplitude until it disappears in a saddle-node
bifurcation of limit cycles at a = asnpo.
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Heteroclinic connections of canard type undergo a transition from
headless canard to canard with head, from the jump-back canard
homoclinic to the jump-away canard homoclinic:
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In order to get a hold on the parameters close to c = 0, we rescale
the parameters and introduce

(c , a) = (εC , ε2A), (C ,A) ∈ [0,M]× [−M,M] (6)

for some large M > 0. By doing this we in fact assume that
c = O(ε) and a = O(ε2). After the parameter rescaling (6), we
study the system

x ′ = ε
(
−ε2A + εCy − x + O(x2, y3, xy , εy2)

)
y ′ = y2 − x + O(y3) .

(7)

The singularity at (x , y , ε) = (0, 0, 0) is a slow-fast
Bogdanov-Takens point.



Near the fold, we study the system using blow-up [?, ?]. We write

(x , y , ε) = (r2X , rY , rE ), r ≥ 0, (X ,Y ,E ) ∈ S2
+

where S2
+ denotes the half-sphere X 2 + Y 2 + E 2 = 1 with E ≥ 0

(also known as Poincaré or blow-up sphere). The weights are
chosen in a way that the higher order (big-oh) terms in (12) have
also higher order in the rescaled equation.

Sr

S−
a

pa

pr

ps

pn

Σn

Σa

Σout

Σin



x ′ = ε
(
cy − σx − a + O(x2, y3, xy , εy2)

)
y ′ = y2 − x + βy3 + O(y4) ,

(8)

(x , y) = (ε2X , εY ), (X ,Y ) ∈ [−R,R]2, (9)

for some large R > 0. Applying this rescaling to (12), we can
divide out a common factor ε, thus transforming the system into a
regular perturbation family

Ẋ = −A + CY − X + O(ε),

Ẏ = Y 2 − X + O(ε).
(10)
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Theorem
There exists a parameter surface A+

sn(C , ε) = C 2/4 + O(ε) along
which a saddle-node singularity p± exists. On this surface, there
exists a curve C = 1

2 + O(ε) along which a saddle-node homoclinic
(SN-HOM`) connection appears containing the hyperbolic
separatrix of the saddle-node. For C < 1

2 + O(ε) on this parameter
surface, there is a SNIC connection containing a center separatrix
of the saddle-node. For C > 1

2 + O(ε), there is no SNIC
connection.



Proof: SN-bifurcation is stable so there exists A+
sn-curve which is

perturbation of A = C 2/4.
There exists a C k - center outgoing separatrix W and a C∞

incoming stable separatrix V .
Both are (C , ε)-families of curves. Intersect V with a transverse
section parameterized by a coordinate s so that

V : s = ψ(C , ε),

for some smooth ψ. Then integrate W following the vector field
until it reaches V . This gives

s = φ(C , ε),

for some C k -function φ.
Next φ(1/2, 0) = ψ(1/2, 0) and ∂φ

∂C (1/2, 0) 6= ∂ψ
∂C (1/2, 0)

(Melnikov-like computation).



So there we can apply IFT: there exists C = C (ε) along which a
SN-HOM connection appears.
Finally for C < C (ε) we apply the technique of rotating vector
fields to see that the SNIC connection is made.
The same technique shows that C > C (ε) shows a big relaxation
cycle.
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Theorem
Let Cmin >

1
2 . There exists a parameter surface

A`(C , ε) = − 1
16 + C

4 + O(ε), C > Cmin along which a
large-amplitude saddle-homoclinic (HOM`) connection exists. On
this surface, there exists a curve C = 3

4 + O(ε) along which the
homoclinic changes stability (Resonant HOM`): for lower values of
C , the homoclinic is stable, for larger values it is unstable. From
this curve emerges a surface A = Asnpo(C , ε) along which a SNPO
bifurcation takes place. The surfaces Asnpo(C , ε) and A`(C , ε) are
exponentially close.



Proof:
The existence is HOMOCLINIC is similar to that of SN-HOM. (A
little attention must be paid gluing HOM to SN-HOM.)
Take C 1-normal form around hyperbolic saddle (for equivalence){

Ẋ = −X
Ẏ = ρ(C )Y , ρ(C , ε) := 4C − 2 + O(ε) > 0.

Take a section Y = 1 with coordinate x0 and integrate backward in
time until we reach the section X = 1 with coordinate y0. This
gives

y0 = x
ρ(C ,ε)
0 .

Next integrate in positive time.

y0 = φ(A,C , ε) + exp(−Ĩ (ε2x0,A,C , ε)/ε).

(formula explained on blackboard)



Along A = − 1
16 + C

4 we have a HOM connection given by x0 = 0,
so

φ(A,C , ε) + exp(−Ĩ (0,A,C , ε)/ε) = 0.

Applying again a Melnikov argument shows that this bifurcation
line perturbs to ε > 0.
The Saddle-node of Periodic Orbits (SNPO):

∆ := φ(A,C , ε) + exp(−Ĩ (ε2x0,A,C , ε)/ε)− x
ρ(C ,ε)
0 .

We derive with respect to x0:

∆′ = exp(−Î (ε2x0,A,C , ε)/ε)− ρ(C , ε)x
ρ(C ,ε)−1
0 .

It is clear that when ρ(C ) < 1 this expression tends to −∞ as
x0 → 0. When ρ(C ) > 1 we find a critical point at a solution of
the equation

x0 =

(
1

ρ

)1−ρ
exp

(
−Î (ε2x0,A,C , ε)

ε(1− ρ)

)
.



Clearly, this solution is of exponentially-flat type (w.r.t. ε and
1− ρ). Combine with

φ(A,C , ε) + exp(−Ĩ (ε2x0,A,C , ε)/ε) = x
ρ(C ,ε)
0

to find A = Asnpo(C ), ε).
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Before we have used the rescaling

(c , a) = (εC , ε2A), (C ,A) ∈ [0,M]× [−M,M]

It is better to do

(c , a, ε) = (vC , v2A, vE ), (C ,A,E ) ∈ S2, v ≥ 0.

The previous rescaling amounts to looking on a chart of the sphere
in the direction of E = 1.

(c , a, ε) = (v , v2A, vE ), E ≈ 0,A ∈ [−M,M], v ≥ 0.

Since c = v we can simplify to

(a, ε) = (c2A, cE ), E ≈ 0,A ∈ [−M,M], c ≥ 0.

The vector field:

x ′ = cE
(
−c2A + cy − x + O(x2, y3, xy , εy2)

)
y ′ = y2 − x + O(y3) .

(11)



x ′ = cE
(
−c2A + cy − x + O(x2, y3, xy , εy2)

)
y ′ = y2 − x + O(y3) .

(12)

(x , y) = (c2X , cY ), (X ,Y ) ∈ [−R,R]2, (13)

for some large R > 0. Applying this rescaling to (12), we can
divide out a common factor ε, thus transforming the system into a
regular perturbation family

Ẋ = E (−A + Y − X + O(c)),

Ẏ = Y 2 − X + O(c).

=⇒ in this parameter regime the Bogdanov-Takens contact point
blows up to a slow-fast Hopf situation.



Ẋ = E (−A + Y − X + O(c)),

Ẏ = Y 2 − X + O(c).

We find at A = 1/4 + O(c) a saddle-node in the slow dynamics, at
A = 0 + O(c) a slow-fast Hopf point.
At the slow-fast Hopf point there is an extra singularity on the
middle branch, giving rise to HOM-connections.
Furthermore, as the canard cycle grows towards the HOM
connection, somewhere in between there is a zero of the slow
divergence integral, giving rise to the SNPO.
=⇒ the bifurcation diagram is complete!


