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» This talk is about slow-fast systems

{>'< = f(x,y,e, M)
y = Eg(X7y7€7)\)

where € > 0 is small, A is some parameter.
» Mathematical foundations:

» Geometric singular perturbation Theory by Fenichel, Jones
» Desingularization by Dumortier, Roussarie
» Canards by Benoit et al
» Asymptotics by Eckhaus, Wasow, Ramis et al
» Motivation is 2-fold:

» Study of periodic orbits (Hilbert 16th problem)
» Applications to natural rhythms in biology, neurology, ecology,
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Changing the w-nullcline
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Slow-fast equations

~

w' = eg(w,v,e, )
vl = f(w,v,g, 1)

A more specific neuronal model:
w' =e(G(v) — w)
Vi=v3(d—v)—w+1,

with

G ), vV < Wh
(V) - 2
cv+e(v—wn)s, V> wh



Slow-fast analysis
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w =0 w = G(v)—w
V= V3(d-v)—w+1 0 = v(d—v)—w+1

The critical manifold S is cubic shaped and given as a graph

{w = ¢/(v)}, ie.

S=S;UF US,UFTUSS,



Slow-fast analysis
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Slow-fast analysis
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w =0 w = G(v)—w

V= v3(d-v)—w+1 0 = v3(d—v)—w+1

The system can have one, two or three equilibria on w = ¢;(v),
all of them located either on S, or on S



Slow-fast analysis
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w =0 w = G(v)—w
V= v3(d—-v)—w+I 0 = v3(d—v)—w+/

The fold point F* = (w*,v") is a regular jump point.



Assumption

Consider
w' = eg(w,v,e, )
vVl = f(w,v,e,l)

and define
g(vv l> >‘) = g(¢/(v)7 v,0, >\)

For fixed (/,A) = (i, Abif), the fold point F~ = (w—,v ") is a
singular contact point that undergoes a singular Bogdanov-Takens
bifurcation with respect to the parameters (/, \):

_ oG, _ %G, _
G(v™, hif, Abif) = 0, E(V , Ibif, Aif) = 0, W(V , Ioif, Abie) > 0,
oG _ oG, _ 0°G , _
W(V i, Abif) # 0, 5(V , i, Abie) = 0, 8/\({)V(V , Ibif, Abif) 7# 0.

Besides the possible singular points near F~ occurring in this
bifurcation, there are no other singular points on S;.



Proposition
Under these assumptions, the family of vector fields can be locally
transformed in the following normal form near F—,

x' zg(cy—O'X— a-+ O(x2,y3,Xy7€y2))
Y =y —x+ By + 00",

(4)

where 0 = £1, oc > 0 and 8 # 0. The coefficients a, ¢ and 3 can
be computed explicitly in terms of (I, A\, ).
For system (2), the coefficients in the normal form are given by
¢ >0 and
a=dl, B=-1/d° o=1, (5)



(a) (b) (c)
a = c = 0: singular SNIC
a=0, c >0 below ccysp: slow-fast Hopf (truncated)
a=0, c = ceysp: slow-fast Hopf (truncated)
a=0, ¢ > ceusp: slow-fast Hopf
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Theorem

For fixed 0 < ¢ < ceusp and 0 < € < 1 there exists an unstable
equilibrium on the middle branch S, . bounded away from the
lower fold F~. Furthermore, there exist functions

0 < asnpo(€) < ar(e) < as(€) < ac(e) < an(e) < a(e)

that all converge to zero in the singular limit € — 0 (except af,
and for which the following holds:

1. For a, < a, the fold F~ is of regular jump type and a large
stable relaxation cycle exists.

2. At a = aJ,, a saddle-node bifurcation of singular points on the
middle branch S, . in an O(c)-neighbourhood of F~; the large
relaxation cycle persists.

3. For ap < a < af,, the system has a saddle p; and an unstable
focus/node p_ on the middle branch S, . surrounded by the
large relaxation cycle. The unstable focus/node p_ is closer
to the fold F~.



10.

At a = ap, p— changes stability and a subcritical singular
Andronov-Hopf bifurcation takes place; the large relaxation
cycle persists.

For ac < a < ay, repelling small amplitude limit cycles appear
around the stable focus p_; the large relaxation cycle persists.
For as < a < ac, small jump-back canard cycles appear that
rapidly grow in amplitude (canard explosion); the large
relaxation cycle perturbs to a large-amplitude jump-forward
canard cycle.

. At a = ag, a small jump-back homoclinic loop of canard type,

issued from the saddle p, appears together with a stable
large-amplitude canard cycle.

For a; < a < ag, the small homoclinic loop breaks and only
the stable large-amplitude canard cycle persists.

At a = ay, a large-amplitude homoclinic loop of canard type,
issued from the saddle p,, appears together with the outer
large-amplitude cycle.

As a decreases from ay, large amplitude canard cycles appear
that grow in amplitude until it disappears in a saddle-node

hifiircation Af Imit ~veelee 2+ 9 — 4



a = as

a=ay




Heteroclinic connections of canard type undergo a transition from
headless canard to canard with head, from the jump-back canard

homoclinic to the jump-away canard homoclinic:
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In order to get a hold on the parameters close to ¢ = 0, we rescale
the parameters and introduce

(c,a) = (eC,%A),  (C,A) € [0,M] x[-M,M]  (6)

for some large M > 0. By doing this we in fact assume that
c = O(e) and a = O(£?). After the parameter rescaling (6), we
study the system

X = (—A+eCy—x+ 003, y3 xy,cy?))

Y =y*—x+0(y7). ")

The singularity at (x, y,e) = (0,0,0) is a slow-fast
Bogdanov-Takens point.



Near the fold, we study the system using blow-up [?, ?]. We write
(x,y,e):(rZX,rY,rE), r>0,(X, Y,E)ES_%

where S? denotes the half-sphere X2 + Y2 4+ E? = 1 with E > 0
(also known as Poincaré or blow-up sphere). The weights are
chosen in a way that the higher order (big-oh) terms in (12) have

also higher order in the rescaled equation.
Eout




/
X

e(cy—ox—a+ O(x2,y3,xy,5y2))

8
Y =y —x+8y*+ 0%, ®)

(x,y) = (2X,eY), (X,Y) € [-R, R]?, (9)

for some large R > 0. Applying this rescaling to (12), we can
divide out a common factor ¢, thus transforming the system into a
regular perturbation family

X =—-A+CY - X+ 0(e),

Y = Y2 - X+ 0(e). (10)
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Theorem

There exists a parameter surface A, (C,e) = C?/4 + O(¢c) along
which a saddle-node singularity p+ exists. On this surface, there
exists a curve C = % + O(e) along which a saddle-node homoclinic
(SN-HOM; ) connection appears containing the hyperbolic
separatrix of the saddle-node. For C < % + O(e) on this parameter
surface, there is a SNIC connection containing a center separatrix
of the saddle-node. For C > % + O(e), there is no SNIC
connection.



Proof: SN-bifurcation is stable so there exists AZ,-curve which is
perturbation of A= C?/4.

There exists a CX- center outgoing separatrix W and a C*®
incoming stable separatrix V.

Both are (C, ¢)-families of curves. Intersect V' with a transverse
section parameterized by a coordinate s so that

V:s=1(C,e),

for some smooth 1. Then integrate W following the vector field
until it reaches V. This gives

s=¢(C,e),

for some Ck-function ¢. ) {
Next ¢(1/2,0) = (1/2,0) and §2(1/2,0) # 5&(1/2,0)
(Melnikov-like computation).



So there we can apply IFT: there exists C = C(¢) along which a
SN-HOM connection appears.

Finally for C < C(g) we apply the technique of rotating vector
fields to see that the SNIC connection is made.

The same technique shows that C > C(e) shows a big relaxation
cycle.
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Theorem

Let Cpin > % There exists a parameter surface

Ai(C,e) = —& + £ 4+ 0(e), C > Cpin along which a
large-amplitude saddle-homoclinic (HOM;y) connection exists. On
this surface, there exists a curve C = % + O(¢) along which the
homoclinic changes stability (Resonant HOM;): for lower values of
C, the homoclinic is stable, for larger values it is unstable. From
this curve emerges a surface A = Asnpo(C, €) along which a SNPO
bifurcation takes place. The surfaces Asnpo(C,e) and A(C,e) are
exponentially close.



Proof:

The existence is HOMOCLINIC is similar to that of SN-HOM. (A
little attention must be paid gluing HOM to SN-HOM.)

Take C'-normal form around hyperbolic saddle (for equivalence)

X = =X
{Y = p(Q)Y, p(C,e) : =4C -2+ 0(e) > 0.

Take a section Y = 1 with coordinate xp and integrate backward in
time until we reach the section X = 1 with coordinate yy. This

gives
o(C,
Yo = XO( 6).

Next integrate in positive time.

yo = ¢(A, C,e) + exp(—i(szxo,A, C,e)/e).

(formula explained on blackboard)



Along A = —1—16 + % we have a HOM connection given by xp = 0,
so
¢(A7 Ca 8) + exp(—l~(0, A, C7 6)/5) =0.

Applying again a Melnikov argument shows that this bifurcation
line perturbs to € > 0.
The Saddle-node of Periodic Orbits (SNPO):

A = $(A, C,e) + exp(—I(%x0, A, C,€) /) — p(C’a).
We derive with respect to xq:
A’ = exp(—1(%x0, A, C,€)/e) — p(C, E)XO(CE) !

It is clear that when p(C) < 1 this expression tends to —oc as
xo — 0. When p(C) > 1 we find a critical point at a solution of

the equation
o — <1>1pexp —I(e2x0, A, C, €)
RV e(1-p) '




Clearly, this solution is of exponentially-flat type (w.r.t. € and
1 — p). Combine with

B(A, C,e) +exp(—I(2xp, A, C,€) /) = g(Cﬁ)

to find A = Agnpo(C), ).



How to connect both diagrams:

cusp




Before we have used the rescaling

(c,a) = (eC,2A),  (C,A) €[0,M] x [-M, M]
It is better to do

(c,a,e) = (vC,v2A,vE),  (C,AE)e S% v>0.

The previous rescaling amounts to looking on a chart of the sphere
in the direction of E = 1.

(c,a,€) = (v, v2A, vE), E~0,Ac[-M,M],v>0.
Since ¢ = v we can simplify to
(a,e) = (%A, cE), E~0,Ac[-M,M],c>0.
The vector field:

X' =cE(—=A+cy —x+ O(x%, y°, xy,ey%))

y' =y?—x+0(y%). -



X = cE (~RA+cy —x+ O(x%,y°, xy,ey?))

Y =y*—x+0(°). (12

(x,y) = (c®X, cY), (X,Y) € [-R,R]?, (13)

for some large R > 0. Applying this rescaling to (12), we can
divide out a common factor ¢, thus transforming the system into a
regular perturbation family

X =E(-A+Y — X+ 0(c)),
Y =Y2_- X+ 0(c).

—> in this parameter regime the Bogdanov-Takens contact point
blows up to a slow-fast Hopf situation.



X =E(-A+Y — X+ 0(c)),
Y =Y2_- X+ 0(c).

We find at A=1/4+ O(c) a saddle-node in the slow dynamics, at
A =0+ O(c) a slow-fast Hopf point.

At the slow-fast Hopf point there is an extra singularity on the
middle branch, giving rise to HOM-connections.

Furthermore, as the canard cycle grows towards the HOM
connection, somewhere in between there is a zero of the slow
divergence integral, giving rise to the SNPO.

—> the bifurcation diagram is complete!



