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Setting

Family of cubic vector fields X = X(5.4p.c.d.e.f.g)>

X =0x =y + M(x,y) + (dx — y)(x* + y?),
V= x 468y + N(x,y) + (x + dy)(x2 + y?),

where M(x,y) = ax? 4 bxy + cy? and N(x,y) = ex? + fxy + gy?
for a,b,c,e,f,g,6,d € R,

such that its phase portrait presents a center at the origin as well
as at infinity.

We say that infinity is a center for X if after transformation

x =cosf/r and y = sin@/r the origin of the transformed vector
field is a center. In this case, X has an unbounded period annulus.

Lemma
For X to present simultaneously a center at the origin as well as at
infinity, it is necessary that § = d = 0.
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Characterization for coexisting center at origin and at
infinity

After rotation

» Hamiltonian class with Hamiltonian H = H, ) :

H %=y =2+’ —y (P +y?),
Xigce) 9 2 2 2,2

= y=x+ex"+gy —I—X(X +y),

Hx,y) =3 (x®*+y?) + e + g0 — 1oy + 1 (X +y2)2
» Reversible class (with respect to (x, y,t) — (x, —y, —t)):

R Xx=-y+bxy—y(x*+y?),
Xigbe) <\ - 2 2 2, .2

&2 y=x+e®+gy’+x(x*+y?),

where e > 0 is sufficient.
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Characterization for coexisting center at origin and at
infinity

After rotation

» Hamiltonian class with Hamiltonian H = H, ) :

«H x=-y—2gxy+cy’—y(x*+y?),
(g.ce) 7 L 2 2 2 2
y=x+ex°+gy —i—x(x +y),

Hixy) =3 (3 +y?) + et +o0? = ToP + 1 (2 +y?)°
» Reversible class (with respect to (x, y,t) — (x, —y, —t)),
introducing new parameter f by f = b+ 2g:

xR x=—y+(f=28)xy —y (x*+y?),
(g.f¢) S 2 2 2 2
y=x+e+gy’+x(x*+y?),

where e > 0 is sufficient. O gsd



No limit cycles

div(X) = %—')\:’—i—%—’)\/’ = 2ax + by + fx + 2gy
» Hamiltonian class: b= —2g,a = f = 0, hence divergence is
identically 0. (good!)

» Reversible class: a = ¢ = f = 0, hence divergence reduces to:
(b+2g)y. As a consequence, if X( be) not Hamiltonian,
periodic orbits have to pass the x-axis.
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Matters of study

» Global center

» Classification of global phase portraits by topological
equivalence; use Markus-Neumann-Peixoto Theorem:
» Assume that (R2,g01) and (R2,502) are two continuous flows
with only isolated singular points.
» Then these flows are topologically equivalent if and only if
their completed separatrix skeletons are equivalent.

» Separatrix bifurcations
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Classification results of global phase portraits

Up to topological equivalence,
» 61 different global phase portraits
» At most 7 singularities or infinitely many singularities
» No limit cycles
» 22 for the Hamiltonian Class [CLT2011]
» Finitely many singularities
» 53 for the Reversible Class, of which
14 also for Hamiltonian class
8 with collinear singularities [CLT2012]

44 with noncollinear singularities [CT2013,C2016]
1 with infinitely many singularities

vV vy vy
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Result: Classification of X(’;C’e) by 22 Phase portraits
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Polar coordinates (r, )

For (x,y) = (rcos8, rsinf):

Fo= rPA®0),
0 = 1+ rB(0)+r?

where the trigonometric functions A, B are defined by

A(0) = cos- M(cos@,sinf) +sinf - N(cosb,sinb),
B(0) = cosf- N(cos@,sinf) —sinf - M(cosb,sin0).

and satisfy A(0 + ) = —A(0),B(0 +x)=—B(0).
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Singularities in polar coordinates (r, )
(r,0) = (r*,0") with r* = r*(B(6%)) :

» Along rays § = 0* with A(6*) = 0 with B(6*) < -2

» radius r* given by

re = (—8(0) +1/(B(9))? — 4> /2.

T+
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Properties of the rays

Lemma

» If for a certain 0* holds
A(G*) =A (0*) = A" (9*) = A(3) (9*) = 0’ then A=0

» For the Hamiltonian class, we have B = —3A’.

A gsd



Proposition
If A= 0, then
» the Hamiltonian vector field X(Z’C’e) reduces to the global
center x = —y(1+ x>+ y?), y=x(1+x%+y?);
> the reversible vector field ng’e reduces to
x=—y(l+ex+x?>+y?), y=x(1+ex+x%+y?), which
presents

» for 0 < e < 2: a global center;

» for e = 2 : two nested period annuli separated by a homoclinic
loop;

» for e > 2 : two nested period annuli separated by a continuum
of graphics defined by a circle of singularities.

Corollary

» If A0, then A has finite order n at any zero 6%, with n < 3:
AU (6*) = 0,Y0 < j < n and AM(*) =~ # 0.

> If A#0, then X has at most 7 singularities. O gsd



Systematic approach of global classification of phase
portraits

Case 1 or ‘One triple ray’ e—2g =c=0.

Case 2 or ‘One simple ray - two complex rays' e — 2g # 0 and
> —4g(e—2g)<0.

Case 3 or ‘One double ray - one simple ray’ e —2g =0,¢c # 0.

Case 4 or ‘Three simple rays’ e —2g # 0 and
c? —4g(e—2g)>0.

(here with parameter values for Hamiltonian class)
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Geometric analysis based on A, B

Case 1: One triple ray

Case 2: One simple, two complex rays

Case

4 ‘\
/ \\
/ 3\
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0 \

A gsd

Case 4: Three simple rays



Local classification of the singularities along rays

|B(6%)] < 2
7 <0 v >0
| n=2 n=3 n=1 n=2 n=3

@;%
*

&
&

A gsd



Case 1: 1 tripleray (g > 0,c =0,e = 2g)

A(0) = gsin®6 and B(0) = g cos (2 +sin? ) .

AN
AN
/ T
N -
U o

a)g<l1

D) g=1L M=% ()g>1,h% <hl <L A gsd




Case 2: 1 simple, 2 complex rays (g > 0,e > 0)

A(0)=0, A(0)=e—2g>0, B(0)=e.

(a)0<e<?2 (b) e=2,h" = (c)e>2,h) <h® <&

2
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Case 3: 1 double, 1 simple ray (g, c > 0)




Appearance and splitting of singularities

» B(A1) < —B(0),Ve,c,g in Case 3
» Bifurcation values ¢; = ¢;(a),i=1,2:¢; = —% <
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Analysis of the Hamiltonian - in terms of r

» For r,BeR:ﬁs(f)Zrz(%"‘%Bf—i-%ﬂ).
» For (x,y) = (rcosf,rsinf) : H(x,y) :ﬁB((;)(r),

» (a,b)B>—-2,(c)B=-2,(d,e,f)B < 2.
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Analysis of the Hamiltonian - in terms of B

For B < —2 we define the functions hy : (—oo0,—2) — R by

hy (B) =Hp (rs)

_7%( 2+B2:FB\/827) (76+B2¢BM),

1/12
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Linear dependence of B on the parameter ¢ > 0.

» Introduction of new parameter o = cotf; = —%

A(f) = csin?0 (cosf — asin ),
B(6) = —c (2a cos® § 4 3 cos fsin? § + sin® 9),

» Bi< —-By<0 = cB; < —cBy <0,Vec > 0.
» Another bifurcation value c3 = 3 () > ¢ :
» ht(c) < h(c) forc; < c<c3
> hl_ (C3) = h_ (C3Bl) = h+ (—C3Bo) = hg_ (C3)
» ht (c) > h% (c) for ¢ > cs.

A gsd



Ss,
S,
~

-
-

|||||
-



Bifurcation of crossing of connections
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Case 4: 3 simple rays

Bl A /;’ v‘: ;"’ Bl
U gL R
Bo By
Case 4Ai Case 4Aii Case 4Aiii
BO ,“y‘ ",”’
B
By
Case 4Bi Case 4Bii Case 4Biii

Case 47 :M >0, Case 4° : M =0and Case 4~ : M <0
where 1 = §0§1§2
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Linear dependence of B on the parameter A > 0

A(f) = — Asinf (cosf — asinf) (cos @ — [Fsinf)
B(9) = — A ((1 4 2a3) cos® § + 3aB cos fsin® § + (ar + 3) sin* 0)

» Introduction of new parameters: («, 3, \) :
A=—(e—2g)=-A(0)>0and0< - <a:
2 4 _ 2 4
c+ (25)\—1- g>\>0 and 5= © m'

2
“A(1+4+2ap), g=-Xaf, c=Ala+p).

B(0) = =X (14 2a) = ABo (o, 8) = Bo (V) ,
A28+ a+8) - B
3(91)—— m :/\Bl (Oé,ﬁ): Bl ()\),
_ MeaPratB) o
B (62) m ABy (o, B) = Ba (N)



Bifurcation diagram in («, 5)-plane

Ba
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Generic bifurcations

> Case 4A: (o, 8) € A (M > 0)
» (i) Bo < Bo < —B1 <0.
» (ii) Bo < Bg < —B; <0.
> (iii) B, < —B; < By < 0.

» Case 4B: (o, 5) € B (M < 0)
» (i) Bo < B2 < By <0.
> (II) B, < Bg < By <0.

» (i) By < =By < —By < 0.
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Bifurcation in Case 4A

e
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Bifurcation in Case 4B (after first 5 of Case 4A)
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Boundary bifurcations, 1

» Case 4D: (a, 8) € D (N > 0)
> (i) Bo < Bo=—B; <0.
> (ii)Bz<Bo=—Bl<0

» Case 4E: (o, f) € £ (N > 0)
> (i) Bo=B> < —B1 <0.
» (i) Bo= —By < By < 0.

» Case 4H: (o, f) € H (M > 0)
> §0:§2:—§1<0.
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Bifurcation in Case 4D
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Bifurcation in Case 4E
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Bifurcation in Case 4H
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Boundary bifurcations, 2

» Case 4C: (o, 8) € C (N =0)
» (i) Bo < By < By =0.
> (ii) B2 < By < By =0.
> (III) B, < —By < By =0.

a,p) e F (N <0)
:727<§1 <70.
=-Bi<—-Bg<O.

» Case 4F: (
> (i) Bo
I

B
> (i) B2
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Bifurcation in Case 4C

ded



Bifurcation in Case 4F (after the global center)
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Bifurcation in Case 4G
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Bifurcation in case 4B(ii), 1
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Bifurcation in case 4B(ii), 2
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Bifurcation in case 4B(ii), 3
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Bifurcation in case 4B(ii), 4

=N
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Hamiltonian and reversible class

After rotation

» Hamiltonian class with Hamiltonian H :
x=—y—2gxy+cy’:—y(x*+y?),
y=x+e?+gy?+x(x*+y?),

H(x,y) = % (x*+y?) + %ex3 + gxy? — %cy3 + % (x? +y2)2

» Reversible class (with respect to (x, y,t) — (x, —y, —t)):

% =—y+(a=2b)xy —y (*+y?),
Xabe) <4 . 2 2 2 .2
Yy =X+ cx*+ by +x(x+y).

» Assumption ¢ > 0 by invariance under
(vaa tv a, b7 C) — (7Xa -y, t, —ad, 7b7 7C)

A gsd



Classification of global phase portraits of X, 5 ) having
collinear or infinitely many singularities up to topological

equivalence
BO0®

60 ©E

(ITTa) (ITIb) (ITlc) (I11d) (ITIe)
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Local study of singularities along horizontal ray, 1

0<ec<?2 @
c=2,2b—a—2>0 >/\>> @
c=2,2b—a—2<0 <<<< @

c>22b—a—c>0

c>22b—a—c<0
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Local study of singularities along horizontal ray, 2

0<c<2 @
=212 dy @)
e A/ &
c=2,b>1 ”%*% fr':\‘\\
; % &
c>2,b<0 %i M @
’ N
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Local study of singularities along horizontal ray, 3

N7’
c>2,0<b<b_(c) }Ag @
AN
N7’
c>2,b_(c) <b<by(c) @

(PR

c>2,bi(c)<b

®

B @ B

)
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Local phase portrait determines global one

{E(c,81) =0y N {y > 0}

TN
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Hamiltonian and reversible class

After rotation

» Hamiltonian class with Hamiltonian H :
x=—y—2gxy+cy’:—y(x*+y?),
y=x+e?+gy?+x(x*+y?),

H(x,y) = % (x*+y?) + %ex3 + gxy? — %cy3 + % (x? +y2)2

» Reversible class (with respect to (x, y,t) — (x, —y, —t)):

% =—y+(a=2b)xy —y (*+y?),
Xabe) <4 . 2 2 2 .2
Yy =X+ cx*+ by +x(x+y).

» Assumption ¢ > 0 by invariance under
(vaa tv a, b7 C) — (7Xa -y, t, —ad, 7b7 7C)
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Reversible class Y{, ) for which symmetry-axis is simple

Fora>0,v>0,\ € R,
x=—y—yxy —y(x*+y?),
y=x4 (7= x>+ a®Ay% + x(x* + y?),

> Ro={(x,0): (A —7)x >0},
» Rpm ={(x,y) :xtay=0,x <0}.
» H={(a,7,\) € (0,00)%: v =2a2)},
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x=—y(l+yx+x*+y?),
y=x(14yx + x>+ y?),
For |y| > 2 : circle centered at (—v/2,0) with radius 4?/4 — 1 :
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A < 0 : locally along ray Rg

> Fu={(a,7,A) :v>A+2},
7=l =2en)
>~7:'d_ 7’77 7<)\+2}

.X.-
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A < 0 : locally along ray R

..... T —— 0 Gng



A < 0 : Global bifurcation diagram

Global Bifurcation diagram = local one!

g g
’Y; :




A < 0: Global phas



A < 0 : Proof - Global phase portrait with 7 singularities

» Poincaré-Bendixson Theorem

» Triangle bounded by Rg, R+ and vertical y = y}r.




A < 0 : Proof - Global phase portraits with 5 singularities

» Poincaré-Bendixson Theorem

» Triangle bounded by Rg, R and vertical y = y'.




A > 0 : locally along ray Rg

» Fu={v>A+2}, F={y=X+2}and Fg = {7y < XA +2}.
> Eu={y>A-2L E={y=A-2}and Eg={y < A -2}

s
>.SO .
g - = om - = om . )
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A > 0 : Notation referring to local behavior near R

‘ ‘h Ro
(e FUF, oneortwo
e Fqné&, zero
CefUEy oneortwo

Q 0 <>
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A > 0: locally along ray R
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A > 0: locally along ray R

» G = {a?y? - 4(a®+1) < 0},
G = {a?y? —4(a® +1) =0},
Gr = {a?y® - 4(a® +1) > 0},
H) = {20’ — v < 0},

H = {2a?\ — v = 0} and

H, = {22\ — v > 0}.

v

v

v

v

v

A gsd



A > 0 : Notation referring to local behavior near R

k Gk Ri || k k Ry
I 1 ¢CeH/NG one|| | | CeH NG two
H| (eHNG one|H| (eHNG, two
r{CeH,NG one| r |CEHNG two
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A > 0: Local bifurcation diagram near Ry and R+

YA G H
o | 59!
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A > 0: Local bifurcation diagram near Ry and R4
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A > 0: Local bifurcation diagram near Ry and R4

H
77{
[
67-[
\ f
” -
57 57 6L
39
G s =2
............ -
0<A<L2
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A > 0 : Global phase portraits with 1 < n < 3 singularities
1, 24 2u 3d

39, H 39,7" 3u

[




Global phase portraits with 4 singularities
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Proof for uniqueness of 49/

» ‘Cubic differential vf has < 3 tangencies with straight line’

Ry
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Bifurcation diagram for Hamiltonian reversible class




Hamiltonian reversible vfs with 2 < n < 6 singularities
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Global phase portraits for 5,

4@3
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u
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Global phase portraits for 5.
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Global phase portraits for 54

~

1©‘(@ :V

gH
5d
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Global phase portraits for 6,

o)) (e
©
6, 67/ 6;,
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Global phase portraits for 64

6. 64
+
64 64
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Global phase portraits for 7,




7 singularities - Movement of separatrices

= {WE(SS)F) = W,(sl)}
> L= {UE(SEJ,_) = Z/[E(sl—)}
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Global phase portraits for 74




Distribution of phase portraits for X, ) for A >0

Let L, be the number of topologically different phase portraits for
X(ay,0) With n singularities. Then,

» L =1

> L =1,

> L3 =4

» 3 <14 <6
> 10 < Ls < 13;
»8<Le<9;
> [; =28.
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Relative movement of separatrices for
Y—A+2>2 a%*y? —4(alpha® +1) > 0

R
Theorem
1. [ag,00) = (0,00) : @ + yo(«) is strictly increasing.
2. [, 0) = (0,00) : v — y1 () is decreasing.
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Along G in (a, A)-plane

AA




For fixed A > 0 in («,y)-plane




Thank you for your attention!
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