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The context

We consider some planar analytic system with a period annulus P
(open, each orbit inside it is closed, not an equilibrium)

ẋ = X0(x).

For each q ∈ P denote ϕ0(t, q) its flow and T0(q) > 0 its main
period. Note that we obtain an analytic function

T0 : P → R

which, if not constant, is a first integral of ẋ = X0(x).

In practice, one considers a transversal section Σ = {γ(s) : s ∈ I}
and the period function along it

τ(s) = T0(γ(s)).

A critical period is τ(s∗) where s∗ ∈ I is such that τ ′(s∗) = 0.



The critical periods do not depend on γ

Note that
τ ′(s) = ∇T0(γ(s)) · γ′(s)

We have that

(i) if τ ′(s∗) = 0 then ∇T0(q∗) = (0, 0) where q∗ = γ(s∗);

(ii) if ∇T0(q∗) = (0, 0) then τ ′(s∗) = 0 where s∗ ∈ I is such that
q∗ and γ(s∗) are on the same orbit.

The proofs of both (i) and (ii) relies on the facts that
- T0 is a first integral, i.e.

∇T0 · X0 = 0 and T0(ϕ0(t, q)) = T0(q) for all t

- and γ is transversal to X0.



The context

We have that ∇T0(q∗) = (0, 0) if and only if Dϕ0(t, q∗) is
T0(q∗)-periodic.

y ′ = DX0(ϕ0(t, q∗))y

X0(ϕ0(t, q∗)) is a solution of the variational system.

The proposition follows by taking the derivative with respect to q
in the equality

ϕ0(T0(q), q) = q.



The context

The periodic orbits of ẋ = X0(x) in P will be perturbed, more
exactly we consider a family of analytic planar vector fields

ẋ = X (x , ε) (1)

which depends on the small parameter ε ∈ (R, 0) and such that

X (·, 0) = X0.

Denote by ϕ(t, q, ε) its flow.

Case 1. All the perturbed orbits in P are also periodic

Case 2. The perturbed orbits in P are not necessarily periodic
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Case 1. All the perturbed orbits are also periodic

One can define

T : P × R→ R such that T (q; ε) is the period of ϕ(t, q, ε).

Then T (q; ε) is a first integral in P of the perturbed system and,
when considering a transversal section Σ = {γ(s) : s ∈ I} to X0,
the critical points of

s 7→ τ(s; ε) = T (γ(s); ε)

do not depend on γ.

There exists m ≥ 0 such that

T (q; ε) = (T0 + εT1 + · · ·+ εm−1Tm−1) + εmTm(q) + O(εm+1) ,

where T0, ...,Tm−1 are constant and Tm(q) is not constant.

Let τm(s) = Tm(γ(s)), thus τ ′(s; ε) = εmτ ′m(s) + O(εm+1). So,
the critical points of τm give information on the bifurcation of
critical periods.

But the critical points of τm(s) depend on the transversal section?
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Case 1. All the perturbed orbits are also periodic

No, the critical points of τm(s) do not depend on the transversal
section since Tm(q) is a first integral of X0.

Indeed, since

1

εm
[T (q, ε)− (T0 + · · ·+ εm−1Tm−1)]

is also an analytic first integral of ẋ = X (x , ε) and Tm(q) is the
limit as ε→ 0 of this function, we deduce that

Tm : P → R

is a first integral of the unperturbed system.
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Case 2. The perturbed orbits are not necessarily periodic

Let Σ be a transversal section in P to X0, hence to X (x , ε), too.
For each q ∈ Σ, let TΣ(q; ε) be the first return time to Σ for the
flow of ẋ = X (x , ε) in P.

TΣ(q; ε) = T0(q)+εTΣ
1 (q)+· · ·+εmTΣ

m (q)+OΣ(εm+1) , q ∈ Σ.

We would like to obtain information on those critical points of
τ(s; ε) = TΣ(γ(s); ε) that do not depend on Σ = {γ(s) : s ∈ I}.
Since

τ ′(s; ε) = εmτ ′m(s) + OΣ(εm+1), where τm(s) = Tm(γ(s))

we need

TΣ(q; ε) = (T0 + εT1 + . . . ) + εmTm(q) + OΣ(εm+1) , q ∈ Σ

and Tm is a first integral of ẋ = X0(x).



One of the main results: Theorem 1

Theorem
Assume that there exists m ≥ 1 such that the first m Melnikov
functions of ẋ = X (x , ε) vanish identically and that T0(q) = T0 is
constant. Let T1, . . . ,Tm−1 be some real constants. Assume also
that, for some transversal section S we have

T S
1 (q) = T1, . . . ,T

S
m−1(q) = Tm−1 for all q ∈ S .

Then

TΣ
1 (q) = T1, . . . ,T

Σ
m−1(q) = Tm−1 for all q ∈ Σ and for any Σ

and there exists an analytic function Tm in P such that

TΣ
m (q) = Tm(q) for all q ∈ Σ and for any Σ.

Moreover, if not constant, Tm is a first integral in P of x ′ = X0(x).
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Lemma 1

Let [·, ·] denote the Lie bracket, that is

[U,X0] = DU X0 − DX0 U

for two C 1 planar vector fields U and X0.

Lemma
(i) [U,X0] = 0 if and only if t 7→ U(ϕ(t, q, 0)) is a solution of the
variational system y ′ = DX0(ϕ(t, q, 0))y.

(ii) [U,X0] = 0 if and only if U(ϕ(t, q, 0)) = Dϕ(t, q, 0)U(q).

(iii) Let T : P → R be C 1 and not locally constant. We have that
[TX0,X0] = 0 if and only if T is a first integral of x ′ = X0(x).



Lemma 2

Consider the notations

ϕ(TΣ(q, ε), q, ε) = q + εϕΣ
1 (q) + ε2ϕΣ

2 (q) + · · · , q ∈ Σ.

Lemma
Assume that the first m Melnikov functions of ẋ = X (x , ε) vanish.
Then for any transversal section Σ we have that

ϕΣ
k (q) = 0, q ∈ Σ, k ∈ {1, ...,m}. (2)

Proof. Let dγ(s, ε) be the displacement map associated to the
transversal section Σ = {γ(s) : s ∈ I}. We have

ϕ(TΣ(γ(s), ε), γ(s), ε) = γ(s + dγ(s, ε)).

Hence

γ(s+εm+1Mγ
m+1(s)+· · · ) = q+εϕΣ

1 (γ(s))+· · ·+εmϕΣ
m(γ(s))+· · · .

Equating the coefficients of εk in both sides of the above relation
we obtain the conclusion.



Lemma 3

Lemma
Let m ≥ 1 and T0,T1, . . . ,Tm−1 be some real constants. Assume
that the first m Melnikov functions vanish and that T0(q) = T0,

TΣ
1 (q) = T1, . . . ,T

Σ
m−1(q) = Tm−1 for all q ∈ Σ and for any Σ.

Let
τ(ε) = T0 + εT1 + ...+ εm−1Tm−1.

Then there exists an analytic function ψm such that

ϕ(τ(ε), q, ε) = q + εmψm(q) + O(εm+1) for all q ∈ P,

ψm(q) = −TΣ
m (q)X0(q) for all q ∈ Σ and for any Σ ,

[ψm,X0] = 0.



Lemma 3 for m = 1

Assume that the first Melnikov function vanish and T0(q) = T0.
Then the function

ψ1(q) =
∂ϕ

∂ε
(T0, q, 0)

is analytic in P and satisfies

ϕ(T0, q, ε) = q + εψ1(q) + O(ε2) for all q ∈ P,

ψ1(q) = −TΣ
1 (q)X0(q) for all q ∈ Σ and for any Σ

and
[ψ1,X0] = 0.



Theorem 1 for m = 1 and its proof

Assume that the first Melnikov function vanish and T0(q) = T0.
Then there exists an analytic function T1 in P such that

TΣ
1 (q) = T1(q) for all q ∈ Σ and for any Σ.

Moreover, if not constant, T1 is a first integral in P of x ′ = X0(x).

The proof follows by Lemma 3 for m = 1 (ψ1(q) = −TΣ
1 (q)X0(q)

and [T1X0,X0] = 0) and Lemma 1(iii).

The proof of Theorem 1 for m ≥ 1 follows by induction using
Lemma 3 and Lemma 1(iii).



Proof of Lemma 3

We have

ϕ(TΣ(q, ε), q, ε) = ϕ(εmTΣ
m (q) + ... , ϕ(τ(ε), q, ε) , ε) =

ϕ(τ(ε), q, ε) + εmTΣ
m (q)ϕ̇(0, q, 0) + OΣ(εm+1)

Using Lemma 2 we obtain that

ϕ(TΣ(q, ε), q, ε) = q + OΣ(εm+1).

Then, indeed,

ϕ(τ(ε), q, ε) = q − εmTΣ
m (q)X0(q) + OΣ(εm+1).



Proof of Lemma 3

It remained only to prove that ψm and X0 commute. We use

ϕ(τ(ε), q, ε) = q + εmψm(q) + O(εm+1)

to write

ϕ(τ(ε), ϕ(t, q, ε), ε) = ϕ(t, q, ε) + εmψm(ϕ(t, q, ε)) + O(εm+1)

and in

ϕ(τ(ε), ϕ(t, q, ε), ε) = ϕ(t, q + εmψm(q) + O(εm+1), ε) =

ϕ(t, q, ε) + εmDϕ(t, q, 0)ψm(q) + O(εm+1).

Hence
ψm(ϕ(t, q, 0)) = Dϕ(t, q, 0)ψm(q)

which, applying Lemma 1 (ii) assures that [ψm,X0] = 0.
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The derivative of the period function

[FrGaGu] E. Freire, A. Gasull, A. Guillamon, First derivative of the
period function with applications, J. Differential Equations 204
(2004) 139-162.

[GaYu] A. Gasull, J. Yu, On the critical periods of perturbed
isochronous centers, J. Differential Equations 244 (2008) 696-715.

Theorem
Assume that the C 1 vector field X has a center at p with period
annulus P (open set that does not contain p). ϕ(t, q) denotes its
flow.
Take some C 1 vector field U transversal to X in P.
Take α, β ∈ C 1(P) such that [X ,U] = αX + βU.
Take γ : I → R a solution of ẋ = U(x) and τ(s) be the period of
ϕ(t, γ(s)). Then for each s ∈ I we have

τ ′(s) =

∫ τ(s)

0
α(ϕ(t, γ(s)))e−

∫ t
0 β(ϕ(v ,γ(s)))dvdt.



The orbits of X are not quite closed

Now we drop the assumption on X0 to have a center in the
previous theorem.
Still we have that Σ = {γ(s) : s ∈ I} is a transversal section to
the orbits of X in P.
Assume instead that for any s ∈ I , each orbit of X that starts at
γ(s) returns to Σ and let τ(s) denote the first return time to Σ of
this orbit.
Let π(s) = γ−1(ϕ(τ(s), γ(s))) be the Poincaré return map to Σ.
Then

τ ′(s) =

∫ τ(s)

0
α(ϕ(t, γ(s)))e−

∫ t
0 β(ϕ(v ,γ(s)))dvdt (3)

π′(s) = e−
∫ τ(s)

0 β(ϕ(t,γ(s)))dt . (4)

We have center if and only if
∫ τ(s)

0 β(ϕ(t, γ(s)))dt = 0.



Proof

γ(π(s)) = ϕ(τ(s), γ(s))

π′(s) γ′(π(s)) = τ ′(s)
dϕ

dt
(τ(s), γ(s)) + Dϕ(τ(s), γ(s)) · γ′(s)

π′(s)U(γ(π(s))) = τ ′(s)X (γ(π(s))) + Dϕ(τ(s), γ(s)) · U(γ(s)).

η(t, q) := Dϕ(t, q)U(q)

η(τ(s), γ(s)) = π′(s)U(γ(π(s)))− τ ′(s)X (γ(π(s))).

η̇ = DX (ϕ(t, q))η, η(0) = U(q) and [X ,U] = αX+βU imply [GaYu]

η(τ(s), γ(s)) = e−
∫ τ(s)

0 β(ϕ(v ,γ(s)))dv U(γ(π(s)))

−
∫ τ(s)

0 α(ϕ(u, γ(s)))e−
∫ u

0 β(ϕ(v ,γ(s)))dvdu X (γ(π(s)))



The case of a perturbed system [GaYu]

In the theorem from [GaYu] take X = Xε = X0 + εX1 where X0

has an isochronous center of period T0 at p and choose U0 to be
transversal to X0 and such that

[X0,U0] = 0.

Take λ1, µ1 such that

X1 = λ1X0 + µ1U0.

Denote the period of ϕ(t, γ(s), ε) by (where γ(s) is some solution
of ẋ = U0(x))

τ(s; ε) = T0 + ετ1(s) + O(ε2).

Then

τ ′1(s) = −
∫ T0

0
∇λ1(ϕ0(t, γ(s))) · U0(ϕ0(t, γ(s)))dt.



The case of a perturbed system [GrVi]

[GrVi] M. Grau, J. Villadelprat, Bifurcation of critical periods from
Pleshkan’s isochrones, J. London Math. Soc. 81 (2010) 142-160.

Take m ≥ 1,

X = Xε = X0 + εX1 + · · ·+ εmXm + O(εm+1),

Xm = λmX0 + µmU0,

τ(s; ε) = T0 + ετ1(s) + · · ·+ εmτm(s) + O(εm+1).

New assumption: there exists an analytic family of diffeomorphisms
{Φε}, in a neighborhood of (0, 0), such that Φε linearizes jm(Xε).
Then τ1, . . . , τm−1 are constant and

τ ′m(s) = −
∫ T0

0
∇λm(ϕ0(t, γ(s))) · U0(ϕ0(t, γ(s)))dt.



Theorem 2

m ≥ 1 and the first m Melnikov functions vanish identically.

ẋ = X (x , ε) = X0 + εX1 + · · ·+ εmXm + O(εm+1).

Choose U0 to be transversal to X0 and such that [X0,U0] = 0.

Xm = λmX0 + µmU0.

New assumption: there exists an analytic family of
diffeomorphisms {Φε} in P, such that

(Ψ)∗(jm(Xε)) = X0 + o(εm+1).

Then τγ(s; ε) = T0 + εT1 + · · ·+ εmτm(s) + Oγ(εm+1) and

τ ′m(s) = −
∫ T0

0
∇λm(ϕ0(t, γ(s))) · U0(ϕ0(t, γ(s)))dt.



Thank you for your attention.
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