On the time of first return of a perturbed periodic orbit

Adriana Buică, Jaume Giné, Maite Grau

Universitatea Babeș-Bolyai din Cluj-Napoca, Universitat de Lleida

Theorem 1

Theorem 1

Proof of Theorem 1

Theorem 1

Proof of Theorem 1

Theorem 2

Theorem 1

Proof of Theorem 1

Theorem 2

▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

We consider some planar analytic system with a period annulus \mathcal{P} (open, each orbit inside it is closed, not an equilibrium)

$$\dot{x}=X_0(x).$$

For each $q \in \mathcal{P}$ denote $\varphi_0(t, q)$ its flow and $\mathcal{T}_0(q) > 0$ its main period. Note that we obtain an analytic function

$$T_0: \mathcal{P} \to \mathbb{R}$$

which, if not constant, is a first integral of $\dot{x} = X_0(x)$.

In practice, one considers a transversal section $\Sigma = \{\gamma(s) : s \in I\}$ and the *period function* along it

$$\tau(s) = T_0(\gamma(s)).$$

A critical period is $\tau(s^*)$ where $s^* \in I$ is such that $\tau'(s^*) = 0$.

The critical periods do not depend on γ

Note that

$$\tau'(s) = \nabla T_0(\gamma(s)) \cdot \gamma'(s)$$

We have that

(i) if
$$au'(s^*)=0$$
 then $abla au_0(q^*)=(0,0)$ where $q^*=\gamma(s^*);$

(ii) if $\nabla T_0(q^*) = (0,0)$ then $\tau'(s^*) = 0$ where $s^* \in I$ is such that q^* and $\gamma(s^*)$ are on the same orbit.

The proofs of both (i) and (ii) relies on the facts that - T_0 is a first integral, i.e.

$$\nabla T_0 \cdot X_0 = 0$$
 and $T_0(\varphi_0(t,q)) = T_0(q)$ for all t

- and γ is transversal to X_0 .

We have that $\nabla T_0(q^*) = (0,0)$ if and only if $D\varphi_0(t,q^*)$ is $T_0(q^*)$ -periodic.

$$y' = DX_0(\varphi_0(t, q^*))y$$

 $X_0(\varphi_0(t, q^*))$ is a solution of the variational system.

The proposition follows by taking the derivative with respect to q in the equality

 $\varphi_0(T_0(q),q)=q.$

The periodic orbits of $\dot{x} = X_0(x)$ in \mathcal{P} will be perturbed, more exactly we consider a family of analytic planar vector fields

$$\dot{x} = X(x,\varepsilon) \tag{1}$$

(日) (日) (日) (日) (日) (日) (日) (日)

which depends on the small parameter $\varepsilon \in (\mathbb{R}, 0)$ and such that

$$X(\cdot,0)=X_0.$$

Denote by $\varphi(t, q, \varepsilon)$ its flow.

The periodic orbits of $\dot{x} = X_0(x)$ in \mathcal{P} will be perturbed, more exactly we consider a family of analytic planar vector fields

$$\dot{x} = X(x,\varepsilon) \tag{1}$$

which depends on the small parameter $\varepsilon \in (\mathbb{R}, 0)$ and such that

$$X(\cdot,0)=X_0.$$

Denote by $\varphi(t, q, \varepsilon)$ its flow.

Case 1. All the perturbed orbits in \mathcal{P} are also periodic

Case 2. The perturbed orbits in \mathcal{P} are not necessarily periodic

One can define

 $T: \mathcal{P} \times \mathbb{R} \to \mathbb{R}$ such that $T(q; \varepsilon)$ is the period of $\varphi(t, q, \varepsilon)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

One can define

 $T: \mathcal{P} \times \mathbb{R} \to \mathbb{R}$ such that $T(q; \varepsilon)$ is the period of $\varphi(t, q, \varepsilon)$.

Then $T(q; \varepsilon)$ is a first integral in \mathcal{P} of the perturbed system and, when considering a transversal section $\Sigma = \{\gamma(s) : s \in I\}$ to X_0 , the critical points of

$$s \mapsto \tau(s; \varepsilon) = T(\gamma(s); \varepsilon)$$

do not depend on γ .

One can define

 $T: \mathcal{P} \times \mathbb{R} \to \mathbb{R}$ such that $T(q; \varepsilon)$ is the period of $\varphi(t, q, \varepsilon)$.

Then $T(q; \varepsilon)$ is a first integral in \mathcal{P} of the perturbed system and, when considering a transversal section $\Sigma = \{\gamma(s) : s \in I\}$ to X_0 , the critical points of

$$s \mapsto \tau(s; \varepsilon) = T(\gamma(s); \varepsilon)$$

do not depend on γ .

There exists $m \ge 0$ such that

$$T(q;\varepsilon) = (T_0 + \varepsilon T_1 + \cdots + \varepsilon^{m-1} T_{m-1}) + \varepsilon^m T_m(q) + O(\varepsilon^{m+1}) ,$$

where $T_0, ..., T_{m-1}$ are constant and $T_m(q)$ is not constant.

One can define

 $T: \mathcal{P} \times \mathbb{R} \to \mathbb{R}$ such that $T(q; \varepsilon)$ is the period of $\varphi(t, q, \varepsilon)$.

Then $T(q; \varepsilon)$ is a first integral in \mathcal{P} of the perturbed system and, when considering a transversal section $\Sigma = \{\gamma(s) : s \in I\}$ to X_0 , the critical points of

$$s \mapsto \tau(s; \varepsilon) = T(\gamma(s); \varepsilon)$$

do not depend on γ .

There exists $m \ge 0$ such that

 $T(q;\varepsilon) = (T_0 + \varepsilon T_1 + \cdots + \varepsilon^{m-1} T_{m-1}) + \varepsilon^m T_m(q) + O(\varepsilon^{m+1}) ,$

where $T_0, ..., T_{m-1}$ are constant and $T_m(q)$ is not constant.

Let $\tau_m(s) = T_m(\gamma(s))$, thus $\tau'(s; \varepsilon) = \varepsilon^m \tau'_m(s) + O(\varepsilon^{m+1})$. So, the critical points of τ_m give information on the bifurcation of critical periods.

But the critical points of $\tau_m(s)$ depend on the transversal section?

No, the critical points of $\tau_m(s)$ do not depend on the transversal section since $T_m(q)$ is a first integral of X_0 .

No, the critical points of $\tau_m(s)$ do not depend on the transversal section since $T_m(q)$ is a first integral of X_0 .

Indeed, since

$$\frac{1}{\varepsilon^m}[T(q,\varepsilon)-(T_0+\cdots+\varepsilon^{m-1}T_{m-1})]$$

is also an analytic first integral of $\dot{x} = X(x, \varepsilon)$ and $T_m(q)$ is the limit as $\varepsilon \to 0$ of this function, we deduce that

$$T_m: \mathcal{P} \to \mathbb{R}$$

is a first integral of the unperturbed system.

Theorem 1

Proof of Theorem 1

Theorem 2

Case 2. The perturbed orbits are not necessarily periodic

Let Σ be a transversal section in \mathcal{P} to X_0 , hence to $X(x, \varepsilon)$, too. For each $q \in \Sigma$, let $T^{\Sigma}(q; \varepsilon)$ be the first return time to Σ for the flow of $\dot{x} = X(x, \varepsilon)$ in \mathcal{P} .

$$T^{\Sigma}(q;\varepsilon) = T_0(q) + \varepsilon T_1^{\Sigma}(q) + \cdots + \varepsilon^m T_m^{\Sigma}(q) + O^{\Sigma}(\varepsilon^{m+1}), \quad q \in \Sigma.$$

We would like to obtain information on those critical points of $\tau(s;\varepsilon) = T^{\Sigma}(\gamma(s);\varepsilon)$ that do not depend on $\Sigma = \{\gamma(s) : s \in I\}$. Since

$$au'(s;arepsilon) = arepsilon^m au'_m(s) + O^{\Sigma}(arepsilon^{m+1}), \quad ext{where} \quad au_m(s) = au_m(\gamma(s))$$

we need

$$T^{\Sigma}(q;\varepsilon) = (T_0 + \varepsilon T_1 + \dots) + \varepsilon^m T_m(q) + O^{\Sigma}(\varepsilon^{m+1}), \quad q \in \Sigma$$

and T_m is a first integral of $\dot{x} = X_0(x)$.

One of the main results: Theorem 1

Theorem

Assume that there exists $m \ge 1$ such that the first m Melnikov functions of $\dot{x} = X(x, \varepsilon)$ vanish identically and that $T_0(q) = T_0$ is constant. Let T_1, \ldots, T_{m-1} be some real constants. Assume also that, for some transversal section S we have

$$T_1^{\mathcal{S}}(q)=\mathit{T}_1,\ldots,\mathit{T}_{m-1}^{\mathcal{S}}(q)=\mathit{T}_{m-1}$$
 for all $q\in\mathcal{S}$.

Then

$$T_1^{\Sigma}(q)=T_1,\ldots,T_{m-1}^{\Sigma}(q)=T_{m-1}$$
 for all $q\in\Sigma$ and for any Σ

and there exists an analytic function T_m in \mathcal{P} such that

$$T_m^{\Sigma}(q) = T_m(q)$$
 for all $q \in \Sigma$ and for any Σ .

Moreover, if not constant, T_m is a first integral in \mathcal{P} of $x' = X_0(x)$.

Theorem 1

Proof of Theorem 1

Theorem 2

Lemma 1

Let $[\cdot, \cdot]$ denote the *Lie bracket*, that is

$$[U, X_0] = DU X_0 - DX_0 U$$

for two C^1 planar vector fields U and X_0 .

Lemma

(i) $[U, X_0] = 0$ if and only if $t \mapsto U(\varphi(t, q, 0))$ is a solution of the variational system $y' = DX_0(\varphi(t, q, 0))y$.

(ii) $[U, X_0] = 0$ if and only if $U(\varphi(t, q, 0)) = D\varphi(t, q, 0)U(q)$.

(iii) Let $T : \mathcal{P} \to \mathbb{R}$ be C^1 and not locally constant. We have that $[TX_0, X_0] = 0$ if and only if T is a first integral of $x' = X_0(x)$.

Lemma 2

Consider the notations

$$arphi(\mathcal{T}^{\Sigma}(q,arepsilon),q,arepsilon)=q+arepsilonarphi_{1}^{\Sigma}(q)+arepsilon^{2}arphi_{2}^{\Sigma}(q)+\cdots,\quad q\in\Sigma.$$

Lemma

Assume that the first m Melnikov functions of $\dot{x} = X(x, \varepsilon)$ vanish. Then for any transversal section Σ we have that

$$\varphi_k^{\Sigma}(q) = 0, \ q \in \Sigma, \ k \in \{1, ..., m\}.$$
 (2)

Proof. Let $d^{\gamma}(s, \varepsilon)$ be the displacement map associated to the transversal section $\Sigma = \{\gamma(s) : s \in I\}$. We have

$$\varphi(T^{\Sigma}(\gamma(s),\varepsilon),\gamma(s),\varepsilon) = \gamma(s+d^{\gamma}(s,\varepsilon)).$$

Hence

$$\gamma(s+\varepsilon^{m+1}M_{m+1}^{\gamma}(s)+\cdots)=q+\varepsilon\varphi_{1}^{\Sigma}(\gamma(s))+\cdots+\varepsilon^{m}\varphi_{m}^{\Sigma}(\gamma(s))+\cdots.$$

Equating the coefficients of ε^k in both sides of the above relation we obtain the conclusion.

Lemma 3

Lemma

Let $m \ge 1$ and $T_0, T_1, \ldots, T_{m-1}$ be some real constants. Assume that the first m Melnikov functions vanish and that $T_0(q) = T_0$,

$$T_1^\Sigma(q)=T_1,\ \ldots,\ T_{m-1}^\Sigma(q)=T_{m-1}$$
 for all $q\in\Sigma$ and for any $\Sigma.$

Let

$$\tau(\varepsilon) = T_0 + \varepsilon T_1 + \ldots + \varepsilon^{m-1} T_{m-1}.$$

Then there exists an analytic function ψ_m such that

$$arphi(au(arepsilon), q, arepsilon) = q + arepsilon^m \psi_m(q) + O(arepsilon^{m+1}) ext{ for all } q \in \mathcal{P},$$

 $\psi_m(q) = -T_m^{\Sigma}(q)X_0(q) ext{ for all } q \in \Sigma ext{ and for any } \Sigma,$
 $[\psi_m, X_0] = 0.$

Lemma 3 for m = 1

and

Assume that the first Melnikov function vanish and $T_0(q) = T_0$. Then the function

$$\psi_1(q) = rac{\partial arphi}{\partial arepsilon}(T_0,q,0)$$

is analytic in ${\mathcal{P}}$ and satisfies

$$\varphi(T_0, q, \varepsilon) = q + \varepsilon \psi_1(q) + O(\varepsilon^2)$$
 for all $q \in \mathcal{P}$,
 $\psi_1(q) = -T_1^{\Sigma}(q)X_0(q)$ for all $q \in \Sigma$ and for any Σ

$$[\psi_1, X_0] = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Assume that the first Melnikov function vanish and $T_0(q) = T_0$. Then there exists an analytic function T_1 in \mathcal{P} such that

$$T_1^{\Sigma}(q)=T_1(q)$$
 for all $q\in\Sigma$ and for any $\Sigma.$

Moreover, if not constant, T_1 is a first integral in \mathcal{P} of $x' = X_0(x)$.

The proof follows by Lemma 3 for m = 1 ($\psi_1(q) = -T_1^{\Sigma}(q)X_0(q)$ and [T_1X_0, X_0] = 0) and Lemma 1(iii).

The proof of Theorem 1 for $m \ge 1$ follows by induction using Lemma 3 and Lemma 1(iii).

Proof of Lemma 3

We have

$$\begin{split} \varphi(T^{\Sigma}(q,\varepsilon),q,\varepsilon) &= \varphi(\varepsilon^{m}T^{\Sigma}_{m}(q) + \dots, \ \varphi(\tau(\varepsilon),q,\varepsilon) \ , \ \varepsilon) = \\ \varphi(\tau(\varepsilon),q,\varepsilon) + \varepsilon^{m}T^{\Sigma}_{m}(q)\dot{\varphi}(0,q,0) + O^{\Sigma}(\varepsilon^{m+1}) \end{split}$$

Using Lemma 2 we obtain that

$$\varphi(T^{\Sigma}(q,\varepsilon),q,\varepsilon) = q + O^{\Sigma}(\varepsilon^{m+1}).$$

Then, indeed,

$$\varphi(\tau(\varepsilon), q, \varepsilon) = q - \varepsilon^m T_m^{\Sigma}(q) X_0(q) + O^{\Sigma}(\varepsilon^{m+1}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of Lemma 3

It remained only to prove that ψ_m and X_0 commute. We use

$$\varphi(\tau(\varepsilon), q, \varepsilon) = q + \varepsilon^m \psi_m(q) + O(\varepsilon^{m+1})$$

to write

$$\varphi(\tau(\varepsilon),\varphi(t,q,\varepsilon),\varepsilon) = \varphi(t,q,\varepsilon) + \varepsilon^m \psi_m(\varphi(t,q,\varepsilon)) + O(\varepsilon^{m+1})$$

and in

$$\begin{aligned} \varphi(\tau(\varepsilon),\varphi(t,q,\varepsilon),\varepsilon) &= \varphi(t,q+\varepsilon^{m}\psi_{m}(q)+O(\varepsilon^{m+1}),\varepsilon) = \\ \varphi(t,q,\varepsilon) + \varepsilon^{m}D\varphi(t,q,0)\psi_{m}(q) + O(\varepsilon^{m+1}). \end{aligned}$$

Hence

$$\psi_m(\varphi(t,q,0)) = D\varphi(t,q,0)\psi_m(q)$$

which, applying Lemma 1 (ii) assures that $[\psi_m, X_0] = 0$.

Theorem 1

Proof of Theorem 1

Theorem 2

The derivative of the period function

[FrGaGu] E. Freire, A. Gasull, A. Guillamon, First derivative of the period function with applications, *J. Differential Equations* 204 (2004) 139-162.

[GaYu] A. Gasull, J. Yu, On the critical periods of perturbed isochronous centers, *J. Differential Equations* 244 (2008) 696-715.

Theorem

Assume that the C^1 vector field X has a center at p with period annulus \mathcal{P} (open set that does not contain p). $\varphi(t,q)$ denotes its flow.

Take some C^1 vector field U transversal to X in \mathcal{P} . Take $\alpha, \beta \in C^1(\mathcal{P})$ such that $[X, U] = \alpha X + \beta U$. Take $\gamma : I \to \mathbb{R}$ a solution of $\dot{x} = U(x)$ and $\tau(s)$ be the period of $\varphi(t, \gamma(s))$. Then for each $s \in I$ we have

$$\tau'(s) = \int_0^{\tau(s)} \alpha(\varphi(t,\gamma(s))) e^{-\int_0^t \beta(\varphi(v,\gamma(s))) dv} dt.$$

The orbits of X are not quite closed

Now we drop the assumption on X_0 to have a center in the previous theorem.

Still we have that $\Sigma = \{\gamma(s) : s \in I\}$ is a transversal section to the orbits of X in \mathcal{P} .

Assume instead that for any $s \in I$, each orbit of X that starts at $\gamma(s)$ returns to Σ and let $\tau(s)$ denote the first return time to Σ of this orbit.

Let $\pi(s) = \gamma^{-1}(\varphi(\tau(s), \gamma(s)))$ be the Poincaré return map to Σ . Then

$$\tau'(s) = \int_0^{\tau(s)} \alpha(\varphi(t,\gamma(s))) e^{-\int_0^t \beta(\varphi(v,\gamma(s))) dv} dt \qquad (3)$$

$$\pi'(s) = e^{-\int_0^{\tau(s)} \beta(\varphi(t,\gamma(s))) dt}. \qquad (4)$$

We have center if and only if $\int_0^{\tau(s)} \beta(\varphi(t,\gamma(s))) dt = 0$.

Proof

$$\begin{split} \gamma(\pi(s)) &= \varphi(\tau(s), \gamma(s)) \\ \pi'(s) \gamma'(\pi(s)) &= \tau'(s) \frac{d\varphi}{dt}(\tau(s), \gamma(s)) + D\varphi(\tau(s), \gamma(s)) \cdot \gamma'(s) \\ \pi'(s) U(\gamma(\pi(s))) &= \tau'(s) X(\gamma(\pi(s))) + D\varphi(\tau(s), \gamma(s)) \cdot U(\gamma(s)). \\ \eta(t, q) &:= D\varphi(t, q) U(q) \end{split}$$

$$\eta(\tau(s),\gamma(s)) = \pi'(s) U(\gamma(\pi(s))) - \tau'(s) X(\gamma(\pi(s))).$$

 $\dot{\eta} = DX(\varphi(t,q))\eta, \ \eta(0) = U(q) \ \text{and} \ [X,U] = \alpha X + \beta U \ \text{imply} \ [GaYu]$

The case of a perturbed system [GaYu]

In the theorem from [GaYu] take $X = X_{\varepsilon} = X_0 + \varepsilon X_1$ where X_0 has an isochronous center of period T_0 at p and choose U_0 to be transversal to X_0 and such that

$$[X_0, U_0] = 0.$$

Take λ_1, μ_1 such that

$$X_1 = \lambda_1 X_0 + \mu_1 U_0.$$

Denote the period of $\varphi(t, \gamma(s), \varepsilon)$ by (where $\gamma(s)$ is some solution of $\dot{x} = U_0(x)$)

$$\tau(s;\varepsilon) = T_0 + \varepsilon \tau_1(s) + O(\varepsilon^2).$$

Then

$$\tau_1'(s) = -\int_0^{\tau_0} \nabla \lambda_1(\varphi_0(t,\gamma(s))) \cdot U_0(\varphi_0(t,\gamma(s))) dt.$$

The case of a perturbed system [GrVi]

[GrVi] M. Grau, J. Villadelprat, Bifurcation of critical periods from Pleshkan's isochrones, *J. London Math. Soc.* 81 (2010) 142-160.

Take $m \ge 1$, $X = X_{\varepsilon} = X_0 + \varepsilon X_1 + \dots + \varepsilon^m X_m + O(\varepsilon^{m+1}),$ $X_m = \lambda_m X_0 + \mu_m U_0,$ $\tau(s; \varepsilon) = T_0 + \varepsilon \tau_1(s) + \dots + \varepsilon^m \tau_m(s) + O(\varepsilon^{m+1}).$ New assumption: there exists an analytic family of diffeomorphisms $\{\Phi_{\varepsilon}\}$, in a neighborhood of (0, 0), such that Φ_{ε} linearizes $j^m(X_{\varepsilon})$. Then $\tau_1, \dots, \tau_{m-1}$ are constant and

$$au_m'(s) = -\int_0^{T_0}
abla \lambda_m(arphi_0(t,\gamma(s))) \cdot U_0(arphi_0(t,\gamma(s))) dt.$$

Theorem 2

 $m \geq 1$ and the first *m* Melnikov functions vanish identically.

$$\dot{x} = X(x,\varepsilon) = X_0 + \varepsilon X_1 + \cdots + \varepsilon^m X_m + O(\varepsilon^{m+1}).$$

Choose U_0 to be transversal to X_0 and such that $[X_0, U_0] = 0$.

$$X_m = \lambda_m X_0 + \mu_m U_0.$$

New assumption: there exists an analytic family of diffeomorphisms $\{\Phi_{\varepsilon}\}$ in \mathcal{P} , such that

$$(\Psi)^*(j^m(X_{\varepsilon})) = X_0 + o(\varepsilon^{m+1}).$$

Then $\tau^{\gamma}(s;\varepsilon) = T_0 + \varepsilon T_1 + \cdots + \varepsilon^m \tau_m(s) + O^{\gamma}(\varepsilon^{m+1})$ and

$$au_m'(s) = -\int_0^{T_0}
abla \lambda_m(arphi_0(t,\gamma(s))) \cdot U_0(arphi_0(t,\gamma(s))) dt$$

Thank you for your attention.

<□ > < @ > < E > < E > E のQ @